
Internship report � First year of master's degree

May 9 � July 29, 2016

Variational Inference in Probabilistic Programs
a formal derivation of a Black-Box approach

Author:

Raphaël Monat

ENS Lyon

raphael.monat@ens-lyon.org

Supervisor:

Hongseok Yang

Professor of Computer Science, Oxford University

hongseok00X@gmail.com

Abstract

Probabilistic models are used in many �elds to tackle di�erent problems, ranging from image

recognition to diagnosing diseases. The advantage of using models is that we can split the en-

coding of our problem into a probabilistic model from the ways we solve it. We can also classify

models to develop some class-speci�c, but not problem-speci�c algorithms to solve given tasks.

These algorithms are called inference algorithms. These classes of models ease the process of

solving tasks, but scientists still need to develop class-speci�c algorithms. A new approach,

at the intersection of Programming Languages and Machine Learning, is called Probabilistic

Programming. One of the goals of this approach is to let the computer do the inference au-

tomatically, so we do not have to develop class-speci�c inference algorithms to accomplish our

tasks. Probabilistic Programming Languages usually extend probabilistic models. However,

researchers still need to derive general inference algorithms for probabilistic programs. In this

report, we give a short introduction to probabilistic models and probabilistic programming. We

encode probabilistic programs into a probabilistic transition system, and transform our infer-

ence task into an optimisation problem. We simplify this optimisation problem to derive a new,

general, variational inference algorithm for probabilistic programs.



1 Introduction

Using probability to represent uncertainty, probabilistic models are able to treat noisy data mea-
surements, and are very popular in a lot of scienti�c domains these days. For example, most voice
recognition software use Hidden Markov Models [GY07]. These Hidden Markov Models are a class
of probabilistic models. In medicine, Bayesian Networks are a good tool to diagnose patients by
expressing relations between symptoms and diseases.

Bayesian Networks are a combination of directed acyclic graphs and probabilities, which express
dependence between events. Each node represents an event, and the probability of such an event
depends conditionally on its parent nodes. We present here a classical example of a Bayesian
Network in Fig. 1. We will develop this example in the next sections, but we give some intuition
in this introduction. This Bayesian Network represents the fact that the grass can be wet because
of the sprinkler, or because of the rain, and that these last two events depend on whether the sky
is cloudy. Probabilistic models give hypothesis on the shape of the data. Here, one hypothesis is
that the grass can only be wet because it is raining, or because the sprinkler is on, so there is a
dependency between the events �the grass is wet�, �it is raining�, �the sprinkler is on�.

Given some data, we can perform queries on a probabilistic model to understand what we have
learned from our observations. This querying is usually called inference. Inference aims at predicting
hidden parameters or partially known data. To do inference, we will mainly use two probability
rules, called the Bayes rule and the sum rule, presented in Eq. (1).

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B)
Pr(A) =

∑
B

Pr(A,B) (1)

An example of inference on Fig. 1 is: given the fact that the grass is wet and that the sprinkler is
on, what is the probability that it is raining? That is, we are searching for Pr(R = T |W = T, S = T ).
Using the model in Fig.1, we can prove that Pr(R = T |W = T, S = T ) ' 28.98%.

As we will see, computing by hand Pr(R = T |W = T, S = T ) takes some time, even if the Bayes
Network is quite simple. In fact, we can prove that the inference problem on Bayes Networks is NP-
Complete [Coo90]. We can develop di�erent algorithms to do exact inference on Bayes Networks,
to avoid doing the inference by hand. It saves time, but if we had used another class of model, such
as a Markov Network, we would have to derive other inference algorithms, and this is still costly.

The goal of probabilistic programming is to make life of scientists easier by letting the interpreter
of a probabilistic programming language do the inference. Probabilistic programming is a new way to
express probabilistic models, and it is able to express every other probabilistic model. It usually adds
new constructions to programs, such as the ability to create new probability distributions, to sample
from a distribution, to observe an event (sometimes called: to condition on an event), or to return
the probability of a given event. Anglican, Church, and Venture [WvdMM14, GMR+12, MSP14]
are examples of probabilistic programming languages. One real advantage of probabilistic programs
is that scientists can focus on the design of their model rather than spending time developing
new inference algorithms for new models, as inference can be done automatically by the computer.
An example of a probabilistic program written in Anglican is presented in Listing. 1: this shows
that describing probabilistic models and then querying the model is not di�cult to encode in a
probabilistic programming language. Research in probabilistic programming focuses on creating
new and e�cient inference algorithms, analysing a probabilistic program to know which inference
algorithm to use, or rewriting programs to make inference easier.

There are two big families of inference strategies: one called sampling, and the other one called
variational inference. Sampling consists in picking events according to the probability distribution

1



Cloudy

Sprinkler Rain

WetGrass

Pr(C = T ) Pr(C = F )

0.4 0.6

C Pr(R = T ) Pr(R = F )

T 0.8 0.2
F 0.2 0.8

C Pr(S = T ) Pr(S = F )

T 0.1 0.9
F 0.5 0.5

S R Pr(W = T ) Pr(W = F )

T T 0.99 0.01
T F 0.9 0.1
F T 0.9 0.1
F F 0 1

Figure 1: A simple bayes network

given by the model (for example, �it is cloudy, the sprinkler is o�, it is raining, but the grass is not
wet�), and then seeing if they satisfy the constraints in the conditional probability, and counting
them accordingly. This strategy has the advantage of being asymptotically exact, but convergence
can be slow. On the other hand, variational inference is usually faster, but more di�cult to derive
by hand. Variational inference consists in transforming the search for a conditional probability
into an optimisation problem, and then using gradient descent (or other techniques) to solve this
optimisation problem.

My internship was supervised by Hongseok Yang, Professor in the Department of Computer
Science at the University of Oxford. It is part of my �rst year of Master's Degree at the ENS of
Lyon. It lasted from May 9th, to July 29th. During my internship, I �rst started by reading a lot
on variational inference as well as probabilistic programming. Then we searched for new inference
algorithms based on variational inference. We formalized probabilistic programs into a probabilistic
transition system, and then expressed the meaning of variational inference in this setting. I also
regularly attended reading groups on Bayesian Machine Learning in the Department of Statistics
and on Probabilistic Programming in the Department of Information Engineering.

Outline In the next section, we detail what a probabilistic model is, before giving more details
on what probabilistic programming is and how inference on probabilistic programs works. Then,
we present our variational inference for probabilistic programs, as well as some implementation
details. Finally we give a brief presentation of the related work on probabilistic programming and
on variational inference techniques.

2 Inference on probabilistic models

In this section, we �rst de�ne probabilistic models. We show how we can query these models � that
is, we present the concept of inference. Finally, we present exact and approximate methods used to
perform inference.

2



Listing 1: Encoding of the Bayes Network in Anglican a Probabilistic Programming Language

1 (defquery bayes-net [sprinkler wet-grass]

(let [is-cloudy (sample (flip 0.4))

is-raining (cond (= is-cloudy true )

(sample (flip 0.8))

5 (= is-cloudy false)

(sample (flip 0.2)))

sprinkler-dist (cond (= is-cloudy true)

(flip 0.1)

(= is-cloudy false)

10 (flip 0.5))

wet-grass-dist (cond

(and (= sprinkler true)

(= is-raining true))

(flip 0.99)

15 (and (= sprinkler false)

(= is-raining false))

(false)

(or (= sprinkler true)

(= is-raining true))

20 (flip 0.9))]

(observe sprinkler-dist sprinkler)

(observe wet-grass-dist wet-grass)

(predict :is-raining is-raining)))

25 (def samples (doquery :pimh bayes-net [true true] :

number-of-particles 10))

(frequencies (take 10000 samples))

3



2.1 What is a probabilistic model?

As we have brie�y seen before, probabilistic models give hypothesis on the shape of the data we
want to model. In the example shown in the introduction, we suppose that the grass can be wet
because it rains, or because the sprinkler is on; the last two conditions themselves depending on
whether the sky is cloudy or not.

There are di�erent classes of probabilistic models, such as Bayesian Networks or Markov Models.
Probabilistic models are usually de�ned in terms of graphs, because it enables the user to express
models quite compactly, as opposed to describing the full joint probability for example.

We give a de�nition of a Bayesian Network, used in our example in Fig. 1:

De�nition 1 (Bayesian Network). A Bayesian Network consists of:

� A directed, acyclic graph G = (V,E),

� A family of random variables indexed by the nodes of G, (Xv)v∈V ,

� A factorisation of the joint density probability giving a dependency relation:
Pr(X) =

∏
v∈V Pr(Xv|Xpa(v)), where pa(v) = {x ∈ V | (x, v) ∈ E} is the set of parents of v,

� A set of conditional probabilities: Pr(Xv = xv | Xw = xw∀w ∈ Pred(v)).

In our example, the set of conditional probabilities is given in the tables next to the nodes in
Fig. 1, and the factorisation is expressed as:

Pr(W,S,R,C) = Pr(W |S,R) Pr(S|C) Pr(R|C) Pr(C)

Using this rule and the sum rule, we can search for the global probability that the grass is wet:

Pr(W = T ) =
∑

s,r,c∈{T,F}3
Pr(W = T, S = s,R = r, C = c)

=
∑

s,r,c∈{T,F}3
Pr(W = T |S = s,R = c) Pr(S = s|C = c) Pr(R = r|C = c) Pr(C = c)

= 65.988%

We can see that the graphical representation of the Bayesian Network is much more compact
than specifying the full joint probability. A table describing explicitly the joint probability Pr(W =
w, S = s,R = r, C = c) for (c, s, r, w) ∈ {T, F}4 would have size 16 in our particular example.

2.2 The inference problem

Using the factorisation of a Bayesian Network, we see that we can compute basic probabilities, but
nothing with a conditional probability yet. However, it would be interesting to �query� the model,
to know for example the probability that it is raining given the fact that the grass is wet and the
sprinkler is on. This querying is called inference, and is computable using the Bayes rule and the
sum rule (given in Eq. (1)). We prove that Pr(R = T |W = T, S = T ) ' 28.98% in Fig. 2.

4



Pr(R = T |W = T, S = T ) =
Pr(R = T,W = T, S = T )

Pr(W = T, S = T )

=

∑
c∈{T,F} Pr(W = T, S = T,R = T,C = c)∑
r,c∈{T,F}2 Pr(W = T, S = T,R = r, C = c)

=
0.03168 + 0.0594

0.03168 + 0.0594 + 0.0072 + 0.216
' 28.98%

Because:

Pr(W = T, S = T,R = T,C = T )

= Pr(W = T |S = T,R = T ) Pr(S = T |C = T ) Pr(R = T |C = T ) Pr(C = T )

= 0.99 · 0.1 · 0.8 · 0.4 = 0.03168

Pr(W = T, S = T,R = T,C = F )

= Pr(W = T |S = T,R = T ) Pr(S = T |C = F ) Pr(R = T |C = F ) Pr(C = F )

= 0.99 · 0.5 · 0.2 · 0.6 = 0.0594

Pr(W = T, S = T,R = F,C = T )

= Pr(W = T |S = T,R = F ) Pr(S = T |C = T ) Pr(R = F |C = T ) Pr(C = T )

= 0.9 · 0.1 · 0.2 · 0.4 = 0.0072

Pr(W = T, S = T,R = F,C = F )

= Pr(W = T |S = T,R = F ) Pr(S = T |C = F ) Pr(R = F |C = F ) Pr(C = F )

= 0.9 · 0.5 · 0.8 · 0.6 = 0.216

Figure 2: Solving a query on a simple Bayes Network

Pr(R = T |W = T, S = T ) is called the posterior of R = T given the data W = T, S = T . In
general, inference problems can be formulated as below:

Pr(θ|D,H) =
Pr(D|θ,H) Pr(θ|H)

Pr(D|H)

� Pr(θ|D,H) is called the posterior of θ given the data D (and the model H),

� Pr(D|θ,H) is the likelihood of parameters θ in the model H,

� Pr(θ|H) is called the prior probability of θ,

� Pr(D|H) is called the marginal likelihood. It is also seen as a normalisation term: sometimes,
the relation above is written as Pr(θ|D,H) ∝ Pr(D|θ,H) Pr(θ|H).

In our example, D was W = T, S = T , and θ was R = T . Here, H is a hidden parameter designing
our Bayesian Model.

5



2.3 Exact methods to do inference

Performing inference over a class is usually a di�cult problem. In fact, Gregory Cooper proved in
[Coo90] that inference on a Bayesian Network is NP-Complete.

There are three kinds of general, exact methods to perform inference on a probabilistic graphical
model: the naive one, one called variable elimination, and the other one is a message-passing
technique (presented in [WJ08, KF09] for example).

The naive inference algorithm consists in computing every joint probability, as we have done
in Fig. 2. An inference task can be modelled as searching for Pr(θ|D) = Pr(θ,D)

Pr(D) . Let X ∈
{{θ,D}, {D}}. We show how to compute Pr(X = x). Let X be the set of random variables of
the considered model, and Y = X \X. Then, by the sum rule, Pr(X = x) =

∑
y Pr(X = x, Y = y).

Now that we have computed both Pr(θ,D) and Pr(D), we can just divide these two terms to get
our result.

2.4 Approximate methods for inference

As we have seen, exact inference can be really costly, and approximate methods are an interesting
alternative. We can say that there are two main classes of approximate methods: one called
sampling, and the other one called variational inference.

2.4.1 Sampling methods

The idea of sampling-based methods is to draw many instances of our model to have an idea of the
situation. The instances are sometimes called particles, and sampling methods are sometimes named
particle-based methods. The scope of sampling methods is bigger than estimating the probability of
an event, the general framework is about computing the expected value µ of a function f(x) under
some probability density p(x), that is, µ = Ep(x)[f(x)] =

∫
f(x)p(x)dx. In particular, computing

the probability P (X = A) is equivalent to computing E[IA(X)], where I is the usual indicator
function.

The most basic sampling algorithm does the following: let n ∈ N, we de�ne f̂n(x) = 1
n

∑n
i=1 f(xi)

with x = (x1, . . . , xn), the xi drawn according to the probability density p. Then, f̂n(X), our
estimator of µ, is unbiased: if X is a random vector of size n following the probability den-
sity pn, then EX∼pn [f̂n(X)] = µ. Thus, using the strong law of large numbers, we know that

Pr( limn→+∞f̂n(X) = µ) = 1, so this approximation is good, at least asymptotically.
However, this method is not interesting to compute a posterior distribution Pr(X|A). One

simple idea, called rejection sampling, is to sample our xi's according to Pr(X), but then keep them
only if they satisfy the event A. Although this is simple, it is quite ine�cient if Pr(X|A) is much
smaller than Pr(X).

In our example of a Bayes Network, sampling the xi's according to Pr(X) is done by going
through the graph and making choices at random following the conditional probabilities. For ex-
ample, we would choose �rst if it is cloudy (with probability 0.4), then if the sprinkler is on and if
it is raining (with probability 0.1 and 0.8 if the sky is cloudy), and so on. Doing the rejection part
consists just in checking which vector of events we picked, and then keeping this vector only if it
satis�es the conditional event.

More elaborate sampling methods include importance sampling, as well as Monte Carlo Markov
Chain-based methods (MCMC).

6



2.4.2 Variational methods

The idea of variational methods for inference is to �nd the best element q of an approximation
family Q to approximate a posterior distribution. To measure what is the �best� element of our
approximation family, we will use a speci�c distance. However, the usual distances will still involve
our posterior distribution, which is usually intractable � that is, not computable in a reasonable
time. We will instead use a function called the relative entropy, or the KL-divergence, de�ned
below. With some manipulations, we will not need to compute the posterior distribution. The
approximation family should also be less complex than the posterior: otherwise, this method is not
interesting, because it would be not e�cient.

De�nition 2 (KL-divergence). Let p and q be two probability density functions over the same
space. The Kullback-Leibler divergence is de�ned as:

KL(p||q) =

∫ +∞

−∞
p(x) log

p(x)

q(x)
dx

If P and Q are discrete probability distributions, we have:

KL(p||q) =
∑
i

P (i) log
P (i)

Q(i)

Remark 1. We notice that to de�ne the KL-divergence of two density functions, we need the assump-
tion q(x) = 0⇒ p(x) = 0. This is equivalent to supp(p) ⊆ supp(q), where supp f = {x | f(x) > 0}
is the support of the density f .

Let us suppose that we want to compute p(θ|D). In variational inference, we try to solve the
following optimisation problem: argminq∈Q KL(q||p). We now show how to transform this problem
into a maximisation problem only involving the joint distribution, which is known.

We de�ne the evidence lower bound to transform our problem:

De�nition 3 (Evidence lower-bound). Lvi(q) := log p(D)− KL(q(θ)||p(θ|D))

Proposition 1.

Lvi(q) =

∫
q(θ) log

p(θ,D)

q(θ)
dθ

Proof.

log p(D)− KL(q||p) = log p(D) ·
∫
q(θ)dθ −

∫
q(θ) log

q(θ)

p(θ|D)
dθ

=

∫
q(θ) log p(D)dθ +

∫
q(θ) log

p(θ|D)

q(θ)
dθ

=

∫
q(θ) log

p(θ,D)

q(θ)
dθ

Using Prop. 1, we see that argmin
q∈Q

KL(p||q) = argmax
q∈Q

∫
q(θ) log

p(θ,D)

q(θ)
dθ. The advantage of

the last formulation is that only the joint distribution of p appears, which is easier to compute than

7



the posterior. In our Bayes Network of Fig. 1, we have seen that sampling for the joint distribution
just requires to make choices while going through the graph. On the contrary, sampling from the
posterior distribution requires to perform rejection sampling, which is computationally expensive.

Now, to optimise Lvi(q), several techniques are possible, among which gradient ascent, as well
as Lagrange multipliers.

3 A short introduction to probabilistic programming

As we have seen before, the algorithms to perform inference do not depend on the model. As long as
our model is still a Bayes Network, we can change our model of Fig. 1, and apply the same algorithm
to compute a posterior. We could for example add an event to take into account dew in the early
morning. Thus, probabilistic graphical models separate our models from the algorithms we use
to reason on these models. However, there are still di�erent classes of models, for which di�erent
inference algorithms are necessary. This slows down the process of developing new models, and
requires people with skills in inference algorithms to develop new models. The goal of probabilistic
programming is to simplify this process by letting users encode their model, and leaving the inference
to the computer. Probabilistic programs are more expressive than probabilistic graphical models,
and are usually based on a functional programming language. In the following, we introduce the
basics of a probabilistic programming language called Anglican, before explaining a way to perform
inference on probabilistic programs.

3.1 Adding programming languages to probabilistic models

In this part, we present a probabilistic programming language called Anglican [WvdMM14], de-
veloped by researchers from the University of Oxford. Anglican is based on Clojure, a functional
programming language. It handles continuous and discrete random variables, called distributions,
and proposes di�erent inference techniques. Anglican extends the syntax of Clojure using some new
keywords:

� (defquery myquery [args] <body>) de�nes a probabilistic query, having some arguments args.
We can then call di�erent inference algorithms on this query using doquery,

� (sample <dist>) samples an element following the provided distribution,

� (observe <dist> <value>) conditions the query by the event �dist = value�. We will see this
in more detail in the next section,

� (predict <expr>) is the return parameter of the query. It asks for the distribution probability
of the expression <expr>.

We now explain in detail the program encoding a Bayes Network presented in Listing. 1.
We start by de�ning a query inside Anglican, called bayes-net, and having two arguments,

sprinkler and wet-grass. We then de�ne four variables: two scalars and two probability distri-
butions, which are equivalent to the tables given in the Bayes Net de�nition. The construction
(cond b1 c1 b2 c2) is the usual (if b1 then c1 else if b2 then c2). In lines 21 and 22, we force
the query to observe the state of the sprinkler and the grass according to the arguments of the
query. At the end of the query, we ask for the prediction of the event is-raining. We call the
inference algorithm called �pimh� (meaning �Particle Independent Metropolis-Hastings�, which is a
sampling technique) using the doquery keyword, to sample elements from this query. The result
of one execution of the code in Listing. 1 is: :predicts [[:is-raining true]], :log-weight 0.0

8



2878, :predicts [[:is-raining false]], :log-weight 0.0 7122. Indeed, 28.78% is quite a good
approximation of Pr(R = T |W = T, S = T ), which was 28.98%: the relative error is 0.69%. On 10
executions, we got the following results: 28.78%, 28.68%, 28.78%, 28.78%, 29.04%, 29.34%, 29.29%,
28.74%, 28.63%, 29.75%, having mean 28.981%.

3.2 Inference on probabilistic programs

The basic idea of inference in probabilistic programs is to collect di�erent traces sampled from the
posterior distribution.

Using the idea of rejection sampling, inference on probabilistic programs is just collecting valid
traces of a probabilistic program. We describe a general procedure sampling a valid trace from a
probabilistic program in Algorithm. 1.

Algorithm 1: An algorithm sampling from a program

Input: sequence of command c = (c1, . . . , cn)
Output: a valid trace for the program c, satisfying the given observations

1 i = 1
2 while i < n do

3 if ci matches sample dist then

4 just sample from dist

5 else if ci matches observe dist value then

6 sample a value v from dist

7 if v 6= value then

8 Reject the trace
9 Restart the procedure

10 else if ci matches predict expr then

11 store the result of the predict statement as the evaluation of expr
12 else

13 just interpret the program as usual
14 i = i + 1

15 end

As we have seen before, rejection sampling can be quite ine�cient, but it is easy to describe.

4 Variational Inference for Probabilistic Programs

Now that we have seen the basics of probabilistic programming, we present the theoretical results
we established during my internship. We �rst encode probabilistic programs into a probabilistic
transition system (PTS). We de�ne what an approximation of our PTS is, before expressing the vari-
ational inference problem we want to solve. We then present new expressions of the Evidence Lower
Bound (ELBO), before giving a new inference algorithm derived from the theoretical expression of
the ELBO.

4.1 The PTS framework

In this section, we formalise a probabilistic program as a probabilistic transition system. We use a
measure-theoretic approach. Some reminders of measure theory are presented in appendix A. We

9



�rst de�ne the notion of transition density. It is just a transition function which is probabilistic and
described as a density.

De�nition 4. A transition density on a measure space (S,F , µ) is a measurable function k : S×S →
R+ such that:

1. for all s ∈ S, ∫
S
k(s, s′)µ(ds′) = 1;

2. for all measurable subset S0 ⊆ S and r ∈ R+, the following set is measurable:{
s
∣∣∣ ∫

S0

k(s, s′)µ(ds′) < r
}

Using this notion of transition, we can now de�ne the notion of probabilistic transition system:

De�nition 5. A probabilistic transition system (in short, PTS) is a septupleM = (S,F , µ, f, δ, ψ, F )
which consists of the following data:

� (S, F , µ) is a measure space such that µ is σ-�nite. S is the set of states, and an element of
S intuitively represents the values of both the program variables and the program counter.

� f corresponds to a probability density on the initial states: f is a non-negative measurable
function from S to R+ such that ∫

S
f(s)µ(ds) = 1.

� δ is a transition density on (S,F , µ).

� ψ is a measurable function from S to R+. It determines the scores of the states. Intuitively,
δ will be used to model the sample statements, and ψ will be used to model the observe

statements. We will see this in Example 1.

� F ⊆ S is a measurable subset of S and denotes the set of �nal states.

Assume that we are given a PTS: M = (S, F , µ, δ, ψ, F ) We use the following measure space
for the nonempty �nite execution traces of M :

τ ∈ T =
⊔

1≤n<∞
Sn

The σ-algebra G and the measure ν of T are obtained by the standard constructions for countable
disjoint sums and �nite products of σ-�nite measure spaces.

Using the PTS M , we can de�ne two measurable functions. Let n ≥ 0 and τ = s0 . . . sn ∈ T :

∆(τ) =
∏

0≤i<n
[si 6∈ F ] · [sn ∈ F ] · f(s0) ·

∏
0≤i<n

δ(si, si+1) Ψ(τ) =
∏

0≤i≤n
ψ(si)

∆ can be seen as the density of the prior probability on the execution traces ofM . Here [si 6∈ F ]
is a notation for the indicator function taking value 1 if si 6∈ F , and 0 if si ∈ F . ∆ forces the
execution trace to be a valid one: it should start in an initial state, and it �nishes in the �rst �nal
state it encounters. Ψ can be seen as the density of the likelihood term.

We also de�ned a notion of well-formedness of our PTSM , in order to de�ne a posterior density
probability.

10



De�nition 6. A PTS M is well-formed if its ∆ and Ψ on the associated measure space (T,G, ν)
of �nite traces satisfy the following condition:

0 <

∫
T

(
∆(τ) ·Ψ(τ)

)
ν(dτ) <∞.

For such a well-formed PTS M , we de�ne a measurable function Π : T → R+ as follows:

Z =

∫
T

(
∆(τ) ·Ψ(τ)

)
ν(dτ), Π(τ) =

∆(τ) ·Ψ(τ)

Z
,

and call Π the posterior density.

Example 1. We present a really simple example of a conversion of a probabilistic program into a
PTS. We consider the following program (where the li are program labels):

Listing 2: A fairness issue

(defquery coin []

(let [l1 is-fair (sample (flip 0.9))
l2 coin (if is-fair

(flip 0.5)

(flip 0.95))]
l3(observe coin 1)
l4(observe coin 1)
l5(predict is-fair))l6)

This program describes that we have a coin, which has a 90% chances of being fair, and a 10%
chance of being biased (then it follows a Bernoulli law of parameter 0.95), and that when we toss a
coin two times, it gives two heads. We search for the probability that this coin is fair or not.

Here, our set of states is S = J1, 6K×{0, 1}, where J1, 6K corresponds to the program labels, and
{0, 1} corresponds to the value of the variable is-fair, 0 meaning false. We de�ne f((1, 0)) = 1 (so
(1, 0) is the only initial state), and F = {(6, 0), (6, 1)}. Let τ1 = ((1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0))
and τ2 = ((1, 0), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)), we have ∆(τ1) = δ((1, 0), (2, 0)) = 0.1, and ∆(τ2) =
δ((1, 0), (2, 1)) = 0.9 (we just choose is-fair). On the other hand, Ψ(τ1) = ψ((4, 0))ψ((5, 0)) =
0.952, and Ψ(τ2) = ψ((4, 1))ψ((5, 1)) = 0.52 (because we observe two times a �head� event for the
coin). Thus, Z = ∆(τ1)Ψ(τ1) + ∆(τ2)Ψ(τ2) = 0.31525, so Π(τ1) = 28.62%, and Π(τ2) = 71.37%,
and therefore coin is probably still fair. Let us do a quick check: if we had n (observe coin 1), we
would have Z = 0.1 · 0.95n + 0.9 · 0.5n and:

Π(τ1) =
1

1 + 9 · (10
19)n

Π(τ2) =
1

1 + 1.9n

9

In that case, if n = 11, we already have a 99.23% chance that the coin is unfair.

4.2 Approximating the PTS

In variational inference, the goal is to minimise the KL divergence over an approximation family.
Here, we de�ne the approximation family for our PTS. We want to approximate a well-formed PTS

11



M . To do this, we suppose that we have a family consisting of pairs of densities and transition
densities parametrized by θ: {(fθ, δθ)}θ∈Θ on the measure space (S,F , µ). Each pair induces another
PTS Mθ = (S,F , µ, fθ, δθ, ψθ, F ), with ψθ(s) = 1,∀s ∈ S. Then, we have:

∆θ(τ) =
∏

0≤i<n
[si 6∈ F ] · [sn ∈ F ] · fθ(s0) ·

∏
0≤i<n

δθ(si, si+1), Ψθ(τ) =
∏

0≤i≤n
ψθ(si) = 1.

Assuming that Πθ(τ) = ∆θ(τ), we will need to compute KL(∆θ||Π). Using Remark 1, we need
to be sure that supp(∆θ) ⊆ supp(Π). Thus, ∆θ underapproximates Π. We will also use gradient
ascent, so we will need our approximation family to be di�erentiable. To enforce all these conditions,
we de�ne the well-formedness of our approximation family:

De�nition 7. {(fθ, δθ)}θ∈Θ is a well-formed approximation family if

1. for all θ ∈ Θ,

1 =

∫
T

∆θ(τ) ν(dτ),

2. f(s) · ψ(s) = 0 =⇒ fθ(s) = 0 for all s ∈ S and θ ∈ Θ;,

3. δ(s, s′) · ψ(s′) = 0 =⇒ δθ(s, s
′) = 0 for all s, s′ ∈ S and θ ∈ Θ;,

4. Θ is an open subset of Rn for some n and contains 0,

5. for all s, s′ ∈ S, the functions θ 7−→ fθ(s) and θ 7−→ δθ(s, s
′) from Θ to R+ are di�erentiable.

In particular, this ensures that the KL-divergence is well-de�ned:

Lemma 2. For all θ ∈ Θ, supp ∆θ ⊆ supp Π. That is

∀τ ∈ T,Π(τ) = 0 =⇒ ∆θ(τ) = 0.

Proof. Consider θ ∈ Θ and τ ∈ T such that Π(τ) = 0. Let s0 . . . sn = τ . Since Π(τ) = 0:∏
0≤i<n

[si 6∈ F ] · [sn ∈ F ] · f(s0) ·
∏

0≤i<n
δ(si, si+1) ·

∏
0≤i≤n

ψ(si) = 0.

This means that at least one of the following terms is 0:∏
0≤i<n

[si 6∈ F ], [sn ∈ F ], f(s0) · ψ(s0),
∏

0≤i<n
(δ(si, si+1) · ψ(si+1)).

Thus,

∆θ(τ) =
∏

0≤i<n
[si 6∈ F ] · [sn ∈ F ] · fθ(s0) ·

∏
0≤i<n

δθ(si, si+1) = 0.

12



4.3 Expressing the ELBO in the PTS

Now that everything is well-de�ned, we can formulate our inference problem as searching for
argmin
θ∈Θ

KL(∆θ||Π) = argmax
θ∈Θ

Lvi(∆θ). Here, the evidence lower bound is:

Lvi(∆θ) =

∫
T

∆θ(τ) log

(
∆(τ) ·Ψ(τ)

∆θ(τ)

)
ν(dτ) = E∆θ

[
log

∆(τ) ·Ψ(τ)

∆θ(τ)

]
Using some tricks, we can also simplify the expression of ∇θLvi :

Proposition 3. For all θ ∈ Θ, we have that

∇θLvi = E∆θ

[
∇θ [log ∆θ(τ)] · log

(
∆(τ) ·Ψ(τ)

∆θ(τ)

)]
.

Proof.

∇θLvi = ∇θ
[∫

T
∆θ(τ) · log

(
∆(τ) ·Ψ(τ)

∆θ(τ)

)
ν(dτ)

]
=

∫
T
∇θ
[
∆θ(τ) · log

(
∆(τ) ·Ψ(τ)

∆θ(τ)

)]
ν(dτ)

=

∫
T

∆θ(τ) · ∇θ
[
log

(
∆(τ) ·Ψ(τ)

∆θ(τ)

)]
ν(dτ) +

∫
T
∇θ [∆θ(τ)] · log

(
∆(τ) ·Ψ(τ)

∆θ(τ)

)
ν(dτ)

= −
∫
T

∆θ(τ) · ∇θ [log ∆θ(τ)] ν(dτ) +

∫
T

∆θ(τ) · ∇θ [log ∆θ(τ)] · log

(
∆(τ) ·Ψ(τ)

∆θ(τ)

)
ν(dτ)

= −
∫
T

∆θ(τ) · ∇θ ·∆θ(τ)

∆θ(τ)
ν(dτ) + E∆θ

[
∇θ [log ∆θ(τ)] · log

(
∆(τ) ·Ψ(τ)

∆θ(τ)

)]
= −∇θ

∫
T

∆θ(τ) ν(dτ)︸ ︷︷ ︸
1︸ ︷︷ ︸

0

+E∆θ

[
∇θ [log ∆θ(τ)] · log

(
∆(τ) ·Ψ(τ)

∆θ(τ)

)]

We now use the speci�city of our PTS models to �nd other expressions of Lvi . We de�ne two
families of functions, {aiθ : S → R+}i∈N and {biθ : S → R+}i∈N. aiθ(s) expresses the probability
that the i-th state of the execution is de�ned and is s. biθ(s) represents the probability that the
execution starting in s terminates after i steps. The goal of this de�nition is to be able to split the
probability to get a trace τ = s1 . . . sn into an expression using akθ(sk), δθ(sk, sk+1), bn−kθ (sk+1).

These two classes of functions are de�ned inductively as follows:

a0
θ(s
′) = fθ(s

′) · [s′ 6∈ F ] ai+1
θ (s′) =

∫
aiθ(s) · δθ(s, s′) · [s′ 6∈ F ]µ(ds)

b0θ(s) = [s ∈ F ] bi+1
θ (s) =

∫
[s 6∈ F ] · δθ(s, s′) · biθ(s′)µ(ds′)

Using this inductive de�nition, we can easily deduce the following expanded expressions:

13



Lemma 4. For all n ≥ 1,

anθ (s) =

∫ (
fθ(s0) · [s0 6∈ F ] ·

n−2∏
i=0

(δθ(si, si+1) · [si+1 6∈ F ]) · δθ(sn−1, s) · [s 6∈ F ]
)
µn(d(s0:(n−1)))

bnθ (s) =

∫ (
[s 6∈ F ] · δθ(s, s1) ·

n−1∏
i=1

([si 6∈ F ] · δθ(si, si+1)) · [sn ∈ F ]
)
µn(d(s1:n))

In the following, we also use the following four functions:

Aθ(s) =
∞∑
i=0

aiθ(s) Bθ(s) =
∞∑
i=0

biθ(s)

g(s) = f(s) · ψ(s) κ(s, s′) = δ(s, s′) · ψ(s′)

We express parts of the integrand of Lvi , using Tn for n ≥ 0:

Tn(τ) = [|τ | = n+ 1] ·∆θ(τ) · log

(
∆(τ) ·Ψ(τ)

∆θ(τ)

)
In particular, we get the following result:

Lemma 5. For all n ≥ 0,∫
Tn(τ) ν(dτ) =

∫
fθ(s) log

g(s)

fθ(s)
bnθ (s)µ(ds) +

n−1∑
k=0

∫
δθ(s, s

′) log
κ(s, s′)

δθ(s, s′)
akθ(s)b

n−k−1
θ (s′)µ2(d(s, s′))

Proof. The proof is presented in Sec. B.1.

Now, to express Lvi with the family of (Tn)n∈N, we need the following assumptions to hold:

Assumption 1.

n ·
∫
aiθ(s)µ(ds)→ 0 as n→∞ (2)

0 <

∫
Aθ(s)µ(ds) < +∞ (3)

∞∑
i=1

∫
Tn(τ) ν(dτ) =

∫ ∞∑
i=1

Tn(τ) ν(dτ) (4)∫
fθ(s) · log

g(s)

fθ(s)
µ(ds) <∞ (5)∫

δθ(s, s
′) · log

κ(s, s′)

δθ(s, s′)
·Aθ(s)µ2(d(s, s′)) <∞ (6)

Theorem 6 (A �rst expression of Lvi). Under the assumptions above, we can show that:

Lvi =

∫
fθ(s) · log

g(s)

fθ(s)
µ(ds) +

∫
δθ(s, s

′) · log
κ(s, s′)

δθ(s, s′)
·Aθ(s)µ2(d(s, s′)).

14



Proof. The proof is quite long and di�cult, it is omitted from this document. It is easy to show
that (this is shown in Appendix B.2):

Lvi =

∫
fθ(s) · log

g(s)

fθ(s)
·Bθ(s)µ(ds) +

∫
δθ(s, s

′) · log
κ(s, s′)

δθ(s, s′)
·Aθ(s) ·Bθ(s′)µ2(d(s, s′))

Then, we initially thought that Bθ(s) = 1, but we were not able to prove this. We had to prove
a weaker, and more di�cult result. We needed all the assumptions presented above to make the
proof.

After deriving this result, we tried to �nd simpler expression of the Evidence Lower Bound Lvi ,
under some assumptions. We tried to see what happens:

� when δθ(s, s
′) = fθ(s

′). That is, the transition density does not depend on the pre-state s,

� when the transition density δθ(s, s
′) depends on s′ and on the program label of s,

� when at most one variable changes at each transition.

We obtained various results, but the computations where long and not really useful. We searched for
another general, simpli�ed expression of Lvi . We tried to replace s by an si, and then force s = si.
To do this, we introduced the Dirac distribution translated by s, written δs(·). This distribution
has the following property:

∫
f(si)δs(dsi) = f(s).

We �rst introduce two new quantities dθ and eθ to express the partial sums of Aθ. Then we
derive a recurrence relation between aθ, dθ and eθ before proving the new expression of Aθ.

De�nition 8.

dnθ (s) =

n∑
k=0

∫
fθ(s0)

n−1∏
i=0

(δθ(si, si+1)[si 6∈ F ])[sn 6∈ F ]µk(ds0:(k−1))δs(dsk)µ
n−k(dsk+1:n)

enθ (s) =

n∑
k=0

k−1∑
i=0

∫
fθ(s0)

k−1∏
j=0

(δθ(sj , sj+1)[sj 6∈ F ])[sk ∈ F ]µi(ds0:i−1)δs(dsi)µ
k−i(dsi+1:k)

Proposition 7 (Recurrence relation).

∀n ∈ N, dn+1
θ (s) + en+1

θ (s) = an+1
θ (s) + dnθ (s) + enθ (s)

Proof. This is a simple proof, shown in Appendix. B.3.

Proposition 8.

n∑
k=0

akθ(s) = dnθ (s) + enθ (s)

Proof.

dnθ (s) + enθ (s) =
n∑
k=1

akθ(s) + d0
θ(s) + e0

θ(s)

=
n∑
k=1

akθ(s) +

∫
fθ(s0)[s0 6∈ F ]δs(ds0)︸ ︷︷ ︸

a0θ(s)

15



Corollary 9. Let

Dθ(s) = lim
n→+∞

dnθ (s) Eθ(s) = lim
n→+∞

enθ (s)

Dθ and Eθ are well-de�ned, and Aθ(s) = Dθ(s) + Eθ(s)

We give further simpli�cations for the expressions of Dθ and Eθ:

Proposition 10.

Dθ = 0

Proof. By the assumption given in Eq.(3),

∫
Aθ(s)µ(ds) < +∞, so: lim

k→+∞

∫
akθ(s)µ(ds) = 0. We

also know that: 0 ≤ dnθ (s) ≤
∫
anθ (s)µ(ds), so ∀s ∈ S, Dθ(s) = 0.

Proposition 11. Let

hθ(s) =

∫
δθ(s, s

′) log
κ(s, s′)

δθ(s, s′)
µ(ds′).

We have: ∫
Eθ(s)hθ(s)µ(ds) =

∫
∆θ(τ)

( τ−1∑
i=1

hθ(τi)
)
ν(dτ)

Proof. We start with a simple observation on the use of a Dirac distribution:

∫∫
α(si)β(s)δs(dsi)µ(ds) =

∫
α(s)β(s)µ(ds) =

∫
α(si)β(si)µ(dsi)

This is exactly what we use in the following:∫
Eθ(s)hθ(s)µ(ds)

=

∫ +∞∑
k=0

k−1∑
i=0

hθ(s)fθ(s0)
k−1∏
j=0

(δθ(sj , sj+1)[sj 6∈ F ])[sk ∈ F ]µi(ds0:i−1)µk−i(dsi+1:k)δs(dsi)µ(ds)


=

∫ +∞∑
k=0

(
k−1∑
i=0

hθ(si)

)
∆θ(s0 · · · sk)µk+1(ds0:k)

=

∫
∆θ(τ)

( |τ |−1∑
i=1

hθ(τi)
)
ν(dτ)

Theorem 12 (Second expression of the ELBO). Now, the ELBO has the following expression:

Lvi =

∫
fθ(s) log

g(s)

fθ(s)
µ(ds) +

∫
∆θ(τ)

|τ |−1∑
i=1

hθ(τi)

 ν(dτ),

Here:

hθ(s) =

∫
δθ(s, s

′) log
κ(s, s′)

δθ(s, s′)
µ(ds′)

16



Theorem 13. The gradient of the ELBO is:

∇θLvi = Efθ(s)

[
∇θ log fθ(s) log

fθ(s)

g(s)

]
+E∆θ(τ)

∇θ log ∆θ(τ)

|τ |−1∑
i=1

hθ(τi)

+E∆θ(τ)

|τ |−1∑
i=1

∇θhθ(τi)


With:

∇θhθ(τi) = Eδθ(τi,s′)

[
∇θ log δθ(τi, s

′) log
κ(τi, s

′)

δθ(τi, s′)

]
Remark 2. We prefer to write expressions with expectations, since we can estimate the quantities
easily with sampling-based methods, as described in Sec. 2.4.1.

4.4 Derived algorithms

Using the expressions obtained in Theorems 12 and 13, we can now derive a more precise inference
algorithm. The basic algorithm is the following:

Algorithm 2: Simple Stochastic Gradient Ascent

Input: Number N of steps
1 begin

2 Choose θ ∈ Θ randomly
3 for i = 1 to N do

4 θ := θ + η(i) · ∇θLvi(∆θ)
5 Return θ

6 end

Here, η(i) is called the step size or the learning rate. According to [RGB14], Algorithm 2
converges to a maximum of Lvi when the learning rate satis�es the Robbins-Monro conditions:

∞∑
i=1

η(i) =∞
∞∑
i=1

η(i)2 <∞

Now we have formalised variational inference on probabilistic programs into a PTS, and derived
expressions of both the ELBO and its gradient, we need to show how to compute these quantities so
that the Stochastic Gradient Ascent algorithm can be useful. This can be done either by implement-
ing the explicit expression of the gradient of Lvi provided in Theorem 13, or by implementing the
computation of Lvi using Theorem 12, and letting a program compute the gradient using automatic
di�erentiation.

4.4.1 Explicit computation of ∇θLvi

We can implement a procedure to compute ∇θLvi . In fact, what is usually done is an approximate
computation of the gradient using sampling-based estimation. In other words, we use the following
approximation (with s1, . . . , sn ∈ Sn, sampled from fθ):

Efθ(s)

[
∇θ log fθ(s) log

fθ(s)

g(s)

]
' 1

n

n∑
i=1

(
∇θ log fθ(si) log

fθ(si)

g(si)

)
We can also evaluate approximately the other terms of ∇θLvi using this method.

17



4.4.2 Using automatic di�erentiation

Another method to compute the gradient is to use automatic di�erentiation. In short, Automatic
di�erentiation [Ral81] uses the usual chain rule to compute the gradient of a procedure. Thus, we
can implement a procedure computing Lvi(∆θ), and let an automatic di�erentiation library compute
the gradient. We can also rewrite the ELBO using expectations to get:

Lvi = Efθ(s)

[
log

g(s)

fθ(s)

]
+ E∆θ(τ)

|τ |−1∑
i=1

hθ(τi)


Estimating hθ(s) using sampling is described in Algorithm 3, and estimating Lvi is presented

in Algorithm 4. To sample a trace from ∆θ, we just execute the approximated version of our prob-
abilistic program (that is, we execute the PTS Mθ rather than M), using an interpreter similar
to the one presented in Algorithm 1. We can use a Stochastic Gradient Ascent presented in Al-
gorithm 2, where the gradient is computed by an automatic di�erentiation library called on the
function computing Lvi .

Algorithm 3: Computation of hθ(s)

Input: θ, s, N
1 h = 0
2 for i = 1 to N do

3 Sample s′ from δθ(s, ·)
4 h = h+ log κ(s,s′)

δθ(s,s′)

5 return h / N

Algorithm 4: Computation of Lvi
Input: θ, N1, N2

1 l1 = 0
2 l2 = 0
3 for i = 1 to N1 do

4 Sample a state s from fθ

5 l1 = l1 + log g(s)
fθ(s)

6 for i = 1 to N2 do

7 Sample a trace τ from ∆θ

8 for j = 1 to |τ | − 1 do l2 = l2 + hθ(τi)

9 return l1
N1

+ l2
N2

5 Implementation and results

No implementation is ready yet due to a lack of time as well as some technical issues encountered
at the end of my internship. My plan is to implement the algorithm presented above as another
inference technique in Anglican. This way, I do not have to create a whole system with a parser
and an interpreter. Still, I need to understand the structure of Anglican.

18



6 Related work

This part mentions various inference techniques for probabilistic programming, as well as various
versions of black-box variational inference methods. I also read parts of general references on
probabilistic graphical models [KF09] and variational inference [JGJS99, Bis06, WJ08].

In [Gha15], Ghahramani gives a short review of probabilistic programming, mentioning that
probabilistic programming is a state-of-the-art advance in the �eld of probabilistic framework. Fi-
garo [Pfe09] is a probabilistic programming language providing di�erent sampling-based inference
algorithms. Anglican [WvdMM14], Church [GMR+12] and Venture [MSP14] are all higher-order
probabilistic programs, Venture being a successor of Church. Although they support a lot of dif-
ferent sampling algorithms, both Anglican and Church implement variational inference algorithms.
We read papers about variational inference in probabilistic programs [WW13, KRGB15], but in
our case, we tried a formal approach with longer derivations, that may be more precise than just
optimising the basic ELBO. We hope that the simpli�cations we have made reduce the variance of
the estimators of the ELBO.

We also studied papers on variational inference, but in the setting of probabilistic models rather
than probabilistic programming. Usually, variational inference methods work only on a speci�c class
of models. However, [RGB14] is about a global variational inference algorithm, not speci�c to a class
of models, called �black-box variational inference�. It also describes various techniques used to reduce
the variance of the optimisation, because the gradient is estimated using samples. [HLR+16, LT16]
present other black-box variational inference algorithms, where they use generalisations of the KL-
divergence.

7 Conclusion

As we have seen, probabilistic programming simpli�es the development of new probabilistic models
by automating the inference. We hope that this approach will ease the development of new models,
as it does not require knowledge in inference algorithms to create new models. During this internship,
we expressed a probabilistic programming language into a probabilistic transition system (PTS). To
use variational inference, we approximated the PTS by a simpler one, before comparing them using
the evidence lower bound (ELBO). We simpli�ed the expression of the ELBO in our setting to get
something that is � hopefully � easier to compute and more precise, and derived a new inference
algorithm from these expressions.

Future work I ran out of of time to implement this new inference algorithm into Anglican. This
would be really interesting to implement, to get a real idea of the e�ciency of this algorithm. It
could also be interesting to generalise this algorithm to more general divergences, such as the Rényi
divergence [LT16]. Another promising approach is to translate Cross-Entropy methods [dBKMR05]
into our setting. Cross-Entropy is similar to Variational Inference, but the goal is to minimise
KL(p||q) rather than KL(q||p). Thus, the approximating family should not underapproximate the
support of the posterior, but overapproximate this. This might look insigni�cant, but at in program
analysis overapproximations are more widespread and easier to compute than underapproximations.

References

[Bis06] Christopher M Bishop. Pattern Recognition and Machine Learning. Springer New
York, 2006.

19



[Coo90] Gregory F. Cooper. The computational complexity of probabilistic inference using
bayesian belief networks. Artif. Intell., 42(2-3):393�405, 1990.

[dBKMR05] Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A
tutorial on the cross-entropy method. Annals OR, 134(1):19�67, 2005.

[Gha15] Zoubin Ghahramani. Probabilistic machine learning and arti�cial intelligence. Nature,
521(7553):452�459, 2015.

[GMR+12] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz,
and Joshua B. Tenenbaum. Church: a language for generative models. CoRR,
abs/1206.3255, 2012.

[GY07] Mark J. F. Gales and Steve J. Young. The application of hidden markov models in
speech recognition. Foundations and Trends in Signal Processing, 1(3):195�304, 2007.

[HLR+16] José Miguel Hernández-Lobato, Yingzhen Li, Mark Rowland, Thang D. Bui, Daniel
Hernández-Lobato, and Richard E. Turner. Black-box alpha divergence minimization.
In Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, pages 1511�1520, 2016.

[JGJS99] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul.
An introduction to variational methods for graphical models. Machine Learning,
37(2):183�233, 1999.

[KF09] Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles and
Techniques. MIT Press, 2009.

[KRGB15] Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David M. Blei. Automatic
variational inference in stan. In Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 568�576, 2015.

[LT16] Yingzhen Li and Richard E. Turner. Rényi divergence variational inference. CoRR,
abs/1602.02311, February 2016.

[MSP14] Vikash K. Mansinghka, Daniel Selsam, and Yura N. Perov. Venture: a higher-
order probabilistic programming platform with programmable inference. CoRR,
abs/1404.0099, 2014.

[Pfe09] Avi Pfe�er. Figaro: An object-oriented probabilistic programming language. Charles
River Analytics Technical Report, 137, 2009.

[Ral81] Louis B. Rall. Automatic Di�erentiation: Techniques and Applications, volume 120 of
Lecture Notes in Computer Science. Springer, 1981.

[RGB14] Rajesh Ranganath, Sean Gerrish, and David M. Blei. Black box variational inference.
In Proceedings of the Seventeenth International Conference on Arti�cial Intelligence
and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014, pages 814�822,
2014.

[Tao11] Terence Tao. An introduction to measure theory, volume 126. American Mathematical
Soc., 2011.

20



[WJ08] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1�305,
2008.

[WvdMM14] Frank Wood, Jan-Willem van de Meent, and Vikash Mansinghka. A new approach
to probabilistic programming inference. In Proceedings of the Seventeenth Interna-
tional Conference on Arti�cial Intelligence and Statistics, AISTATS 2014, Reykjavik,
Iceland, April 22-25, 2014, pages 1024�1032, 2014.

[WW13] David Wingate and Theophane Weber. Automated variational inference in probabilis-
tic programming. CoRR, abs/1301.1299, 2013.

21



A Some short reminders on measure theory and integration

In this appendix, we give some really short reminders on measure theory and integration, to �x
notations used before. There are a lot of introductions to measure theory, such as [Tao11].

De�nition 9 (σ-algebra). Let X be a set. Σ ⊆ P(X) is a σ-algebra over X if:

� ∅ ∈ Σ,

� ∀B ∈ Σ, B ∈ Σ,

� if ∀n ∈ N, Bn ∈ Σ, then
⋃
n∈NBn ∈ Σ.

Note 1. In the following, X is a set, and Σ be a σ-algebra over X. (X,Σ) is called a measurable
space.

De�nition 10 (Measure). µ : Σ→ R+ is called a measure if it satis�es the following properties:

� for all E ∈ Σ, µ(E) ≥ 0,

� µ(∅) = 0,

� if (Ei)i∈I is a pairwise disjoint countable collection, µ(
⋃
i∈I Ei) =

∑
i∈I µ(Ei).

De�nition 11. A measure µ over (X,Σ) is σ-�nite if µ(X) < +∞.

De�nition 12 (Probability measure). A probability measure µ is a measure such that µ(X) = 1.

Example 2 (Dirac Measure). Let x ∈ X, A ∈ Σ. We de�ne the Dirac measure at point x, written

δx , the following measure: δx(A) =

{
1 if x ∈ A
0 if x /∈ A

De�nition 13 (Measure space). A measure space is a triplet (X,Σ, µ), where X is a set, Σ is a
σ-algebra over X and µ a measure over (X,Σ).

De�nition 14 (Measurable set). Let A ⊆ X, A is measurable if A ∈ Σ.

De�nition 15 (Measurable function). Let (Y, T ) be a measurable space. f : X → Y is measurable
if:

∀E ∈ T, {x ∈ X | f(x) ∈ E} ∈ Σ

22



B Some missing proofs

B.1 A proof of Lemma 5

Proof. The following derivation shows the Lemma 5:∫
Tn(τ) ν(dτ)

=

∫ (
[|τ | = n+ 1] ·∆θ(τ) · log

(∆(τ) ·Ψ(τ)

∆θ(τ)

))
ν(dτ)

=

∫ n−1∏
i=0

[si 6∈ F ] · [sn ∈ F ] · fθ(s0) ·
n−1∏
j=0

δθ(sj , sj+1) ·
(

log
g(s0)

fθ(s0)
+
n−1∑
k=0

log
κ(sk, sk+1)

δθ(sk, sk+1)

)
µn+1(d(s0:n))

=

∫ n−1∏
i=0

[si 6∈ F ] · [sn ∈ F ] · fθ(s0) ·
n−1∏
j=0

δθ(sj , sj+1) · log
g(s0)

fθ(s0)
µn+1(d(s0:n))

+

n−1∑
k=0

∫ n−1∏
i=0

[si 6∈ F ] · [sn ∈ F ] · fθ(s0) ·
n−1∏
j=0

δθ(sj , sj+1) · log
κ(sk, sk+1)

δθ(sk, sk+1)
µn+1(d(s0:n))

=

∫
fθ(s0) · log

g(s0)

fθ(s0)
·
n−1∏
i=0

(
[si 6∈ F ] · δθ(si, si+1)

)
· [sn ∈ F ]µn+1(d(s0:n))

+
n−1∑
k=0

∫
δθ(sk, sk+1) · log

κ(sk, sk+1)

δθ(sk, sk+1)
· fθ(s0) · [s0 6∈ F ] ·

k−1∏
i=0

(
δθ(si, si+1) · [si+1 6∈ F ]

)
·
n−1∏
j=k+1

(
[sj 6∈ F ] · δθ(sj , sj+1)

)
· [sn ∈ F ]µn+1(d(s0:n))

=

∫
fθ(s0) · log

g(s0)

fθ(s0)
· bnθ (s0)µ(ds0)

+

n−1∑
k=0

∫
δθ(sk, sk+1) · log

κ(sk, sk+1)

δθ(sk, sk+1)
· akθ(sk) · bn−k−1

θ (sk+1)µ2(d(sk, sk+1))

=

∫
fθ(s) · log

g(s)

fθ(s)
· bnθ (s)µ(ds) +

n−1∑
k=0

∫
δθ(s, s

′) · log
κ(s, s′)

δθ(s, s′)
· akθ(s) · bn−k−1

θ (s′)µ2(d(s, s′))

B.2 Easy expression of the ELBO

Theorem 14 (�Easy� expression of the ELBO).

Lvi =

∫
fθ(s) · log

g(s)

fθ(s)
·Bθ(s)µ(ds) +

∫
δθ(s, s

′) · log
κ(s, s′)

δθ(s, s′)
·Aθ(s) ·Bθ(s′)µ2(d(s, s′))

23



Proof.

Lvi =

∞∑
n=0

Tn

=
∞∑
n=0

(∫
fθ(s) · log

g(s)

fθ(s)
· bnθ (s)µ(ds)

+
n−1∑
k=0

∫
δθ(s, s

′) · log
κ(s, s′)

δθ(s, s′)
· akθ(s) · bn−k−1

θ (s′)µ2(d(s, s′))
)

=

∫
fθ(s) · log

g(s)

fθ(s)
·
( ∞∑
n=0

bnθ (s)
)
µ(ds)

+

∞∑
n=0

n−1∑
k=0

∫
δθ(s, s

′) · log
κ(s, s′)

δθ(s, s′)
· akθ(s) · bn−k−1

θ (s′)µ2(d(s, s′))

=

∫
fθ(s) · log

g(s)

fθ(s)
·
( ∞∑
n=0

bnθ (s)
)
µ(ds)

+

∞∑
k=0

∞∑
n=k+1

∫
δθ(s, s

′) · log
κ(s, s′)

δθ(s, s′)
· akθ(s) · bn−k−1

θ (s′)µ2(d(s, s′))

=

∫
fθ(s) · log

g(s)

fθ(s)
·Bθ(s)µ(ds)

+

∫
δθ(s, s

′) · log
κ(s, s′)

δθ(s, s′)
·
( ∞∑
k=0

akθ(s) ·
( ∞∑
n=k+1

bn−k−1
θ (s′)

))
µ2(d(s, s′))

=

∫
fθ(s) · log

g(s)

fθ(s)
·Bθ(s)µ(ds) +

∫
δθ(s, s

′) · log
κ(s, s′)

δθ(s, s′)
·Aθ(s) ·Bθ(s′)µ2(d(s, s′))

24



B.3 Proof of Prop. 7

Proof.

dn+1
θ (s) + en+1

θ (s)

=

n∑
k=0

∫
fθ(s0)

n∏
i=0

(δθ(si, si+1)[si 6∈ F ])[sn+1 6∈ F ]µk(ds0:k−1)δs(dsk)µ
n−k(dsk+1:n+1)

+ an+1
θ (s)

+

n∑
k=0

k−1∑
i=0

∫
fθ(s0)

k−1∏
j=0

(δθ(sj , sj+1)[sj 6∈ F ])[sk ∈ F ]µi(ds0:i−1)δs(dsi)µ
k−i(dsi+1:k)

+

n∑
i=0

∫
fθ(s0)

n∏
j=0

(δθ(sj , sj+1)[sj 6∈ F ])[sn+1 ∈ F ]µi(ds0:i−1)δs(dsi)µ
n−i+1(dsi+1:n+1)

=an+1
θ (s) + enθ (s)

+
n∑
k=0

∫
fθ(s0)

n∏
i=0

(δθ(si, si+1)[si 6∈ F ])([sn+1 6∈ F ] + [sn+1 ∈ F ])µk(ds0:k−1)δs(dsk)µ
n−k+1(dsk+1:n+1)

=an+1
θ (s) + enθ (s)

+
n∑
k=0

∫
fθ(s0)

n−1∏
i=0

(δθ(si, si+1)[si 6∈ F ])[sn 6∈ F ]δθ(sn, sn+1)µk(ds0:k−1)δs(dsk)µ
n−k+1(dsk+1:n+1)

=an+1
θ (s) + enθ (s) +

n∑
k=0

∫
fθ(s0)

n−1∏
i=0

(δθ(si, si+1)[si 6∈ F ])[sn 6∈ F ]µk(ds0:k−1)δs(dsk)µ
n−k(dsk+1:n)

=an+1
θ (s) + enθ (s) + dnθ (s)

25


	Introduction
	Inference on probabilistic models
	What is a probabilistic model?
	The inference problem
	Exact methods to do inference
	Approximate methods for inference
	Sampling methods
	Variational methods


	A short introduction to probabilistic programming
	Adding programming languages to probabilistic models
	Inference on probabilistic programs

	Variational Inference for Probabilistic Programs
	The PTS framework
	Approximating the PTS
	Expressing the ELBO in the PTS
	Derived algorithms
	Explicit computation of Lvi
	Using automatic differentiation


	Implementation and results
	Related work
	Conclusion
	Some short reminders on measure theory and integration
	Some missing proofs
	A proof of Lemma 5
	Easy expression of the ELBO
	Proof of Prop. 7


