
Precise Thread-Modular Abstract Interpretation
of Concurrent Programs using Relational

Interference Abstractions

Raphaël Monat1 and Antoine Miné2

1 École Normale Supérieure de Lyon and École Normale Supérieure, France
raphael.monat@ens-lyon.org

2 Sorbonnes Universités, UPMC Univ Paris 6,
Laboratoire d’informatique de Paris 6 (LIP6)

4, pl. Jussieu, 75005 Paris, France
antoine.mine@lip6.fr

Abstract. We present a static analysis by abstract interpretation of
numeric properties in multi-threaded programs. The analysis is sound
(assuming a sequentially consistent memory), parameterized by a choice
of abstract domains and, in order to scale up, it is modular, in that it
iterates over each thread individually (possibly several times) instead of
iterating over their product. We build on previous work that formalized
rely-guarantee verification methods as a concrete, fixpoint-based seman-
tics, and then apply classic numeric abstractions to abstract indepen-
dently thread states and thread interference. This results in a flexible
algorithm allowing a wide range of precision versus cost trade-offs, and
able to infer even flow-sensitive and relational thread interference. We
implemented our method in an analyzer prototype for a simple language
and experimented it on several classic mutual exclusion algorithms for
two or more threads. Our prototype is instantiated with the polyhedra
domain and employs simple control partitioning to distinguish critical
sections from surrounding code. It relates the variables of all threads
using polyhedra, which limits its scalability in the number of variables.
Nevertheless, preliminary experiments and comparison with ConcurIn-
terproc show that modularity enables scaling to a large number of thread
instances, provided that the total number of variables stays small.

Keywords: Program verification, Concurrent programs, Abstract inter-
pretation, Thread-modular analyses, Rely-guarantee methods, Numeric
invariant generation

1 Introduction

In order to exploit the full potential of multi-core processors, it is necessary
to turn to parallel programming, a trend also followed in critical application
domains, such as avionics and automotive. Unfortunately, concurrent programs
are difficult to design correctly, and difficult to verify. In particular, the large

space of possible executions makes it impractical for tests to achieve a good
coverage. Likewise, formal methods that do not cover the whole range of possible
executions (e.g. context bounded methods [30]) can miss errors. In this article,
we study sound static analysis methods based on abstract interpretation [7]
that consider a superset of all possible executions, and are thus suitable for the
certification of concurrent critical software. The concurrency model we consider
is that of multi-thread software, with arbitrary preemption and a global, shared
memory. This model is challenging to analyze as thread instructions that can
actually execute concurrently are not apparent at the syntactic level, and every
access to a global variable can actually be a communication between threads.

In the last few years, sound static analysis methods based on abstract in-
terpretation [7] have established themselves as successful techniques to verify
non-functional correctness properties (e.g. the absence of run-time error) on se-
quential programs with a large data space and complex numeric computations.
Our aim is to extend these sound methods to multi-threaded concurrent pro-
grams by tackling the large control space inherent to these programs. We focus
in particular on scaling in the number of threads. This is achieved by combining
precise, relational abstractions with thread-modular analysis methods. More pre-
cisely, we base our work on the thread-modular concrete semantics introduced
in [27], but our abstractions differ as we employ polyhedral abstractions [9] and
control partitioning [8] to represent fully-relational flow-sensitive thread-local
invariants and thread interference relations, aiming at a higher precision.

Thread-Modular Analysis. A classic view of abstract interpretation consists
in propagating an abstract representation of a set of memory states (e.g., a
box or polyhedron) along the control-flow graph, using loop acceleration such as
widening until a stable abstract element is found [4]. While this technique can be
extended easily to concurrent programs by constructing a product control-flow
graph of threads, it does not scale up for a large number of threads due to the
combinatorial explosion of the control space. Another view consists in a more
literal interpretation, defined as usual by induction on the program syntax, but
using abstract representations of collected program states. This flavor of abstract
interpretation is much more efficient in memory (it does not store an abstract el-
ement for each control location) and has been exploited for the efficient analysis
of large sequential programs [2]. The extension to concurrent programs is more
difficult than for control-flow graphs as the set of interleavings of thread execu-
tions cannot be defined conveniently by induction on the syntax. In this article,
we consider thread-modular analysis methods, which decompose the analysis
of a multi-threaded program into the analysis of its individual threads. They
combine two benefits: the complexity of analyzing a program is closer to that
of analyzing the sum of its threads than their products, and existing efficient
analysis methods for sequential programs (such as abstract interpretation by
induction on the syntax) can be reused without much effort on concurrent ones.

The main difficulty in designing a thread-modular analysis is to soundly and
precisely account, during the analysis of one thread, for the effect of the other
threads. One solution would be to specify a range of possible values for each

Thread 1
1 : while random do

2 : if X < Y then
3 : X ← X + 1
4 : fi

od

Thread 2
a : while random do

b : if Y < 10 then
c : Y ← Y + 1
d : X ← (X + Y)/2
e : fi

od

Fig. 1: An example of concurrent program.

shared variable, but this puts a large burden on the programmer. Moreover, as
shown in the following paragraph, range information is not always sufficient. We
solve both problems by providing a method capable of automatically inferring
relations over the shared variables, whose shape is completely specified by the
choice of an abstract domain.

Simple Interference. Consider, as motivating example, the program in Fig. 1.
Thread 1 repeatedly increments X while it is less than Y . Thread 2 repeatedly
increments Y until 10 and computes into X the average of X and Y . Initially,
X ← 0 and Y ← 1. Although this example is artificial for the sake of presen-
tation, experimental evidence (Sec. 4) shows that the precision brought by our
analysis is also required when analyzing real-world algorithms, such as Lamport’s
Bakery algorithm and Peterson’s mutual exclusion algorithm. In the following,
we assume a sequentially consistent execution model [22].

Existing thread-modular analyses [11,21,12,15,5,27] first analyze each thread
in isolation, then gather interference from this first, unsound analysis, and per-
form a second analysis of each thread in the context of this interference; these
analyses uncover more behaviors of threads, hence more interference, so that
other rounds of analyses with increasing sets of interference will be performed,
until the interference set reaches a fixpoint (possibly with the help of a widen-
ing), at which point the analysis accounts for all the possible behaviors of the
concurrent program. In [5,25], the interference corresponds to the set of values
that each thread can store into each variable, possibly further abstracted (e.g.,
as intervals). A thread reading a variable may either read back the last value
it stored into it, or one of the values from the interference set of other threads.
These analyses are similar to rely-guarantee reasoning [20], a proof method which
is precise (it is relatively complete), but relies on the user to provide interference
as well as program invariants. However, we consider here automated analyses,
which are necessarily incomplete, but parameterized by a choice of abstractions.

In the example, using interval abstractions, the first analysis round uncovers
the interferenceX ← [0, 1], Y ← [1, 1] from Thread 1, andX ← [0, 5], Y ← [1, 10]
from Thread 2. A second round uncovers X ← [1, 10], at which point the set
of interference is stable. When running a final time every thread analysis using
these interference, we get that X and Y are bounded by [0, 10]. However, the

relation X ≤ Y that additionally holds cannot be found with the method of
[5,25]. The reason is that interference is handled in a non-relational way: the
analysis cannot express (and so, infer) that, when X ≤ Y is established by a
thread, the relation is left invariant by the interference of the other thread.

Relational Interference. In the present article, we enrich the notion of inter-
ference to allow such relational information to be inferred and exploited during
the analysis. More precisely, following [27], we see interference generated by an in-
struction of a thread as a relation linking the variable values before the execution
of the instruction (denoted x, y) and the variable values after its execution (de-
noted as x′, y′). Our contribution is then to use relational domains to represent
both relations between variables (such as x ≤ y ∧ x′ ≤ y′ when X ≤ Y remains
invariant) and input-output relations (such as x′ = x+ 1 for X ← X + 1). Fur-
thermore, we distinguish interference generated at different control states, in our
case, a pair (l, l′) of control locations of Thread 1 and Thread 2, to enable flow-
sensitive interference. In the example of Fig. 1, we have a piece of interference
from Thread 1 being (l, l′) = (3, 4) ; x < y ; x′ = x+1 ; y = y′. For Thread 2, the
interference from program point d to e is: y ≤ 10 ; x ≤ y ; y = y′ ; 2x′ = x+ y.
We note that the global invariant X ≤ Y is preserved. To achieve an effective
analysis, the states and relations manipulated by the semantics are actually ab-
stracted, using classic numeric abstract domains (such as polyhedra [9]), as well
as partitioning of control locations. The analysis is thus parametric, and allows
a large choice of trade-offs between cost, precision, and expressiveness. Our pro-
totype implementation uses the Apron [19] and BddApron [17] libraries. The
correctness of the analysis is proved in the thread-modular abstract interpreta-
tion framework introduced in [27]. Yet, we stress on the fact that the abstract
analysis subsequently derived in [27] is not able to precisely analyze the example
from Fig. 1, as it does not exploit the capabilities of relational numeric domains
to represent interference as relations, while we do.

Contribution. To sum up, we build on previous theoretical work [27] to develop
a thread-modular static analysis by abstract interpretation of a simple numeric
language, which goes beyond the state of the art [11,21,12,15,5,27] by being
fully relational and flow-sensitive. In [27], a small degree of flow-sensitivity and
relationality was added to an existing scalable analysis in the form of specialized
abstract domains designed to remove specific false alarms, following the design
by refinement methodology of Astrée [3]. Here, starting from the same thread-
modular semantics, we build a different abstract analysis targeting small but
intricate algorithms that require a higher level of precision than [27]. Merging
our analysis with [27] in order to achieve a higher precision only for programs
parts that require it while retaining overall scalability remains a future work.

We present examples and experimental results to demonstrate that the anal-
ysis is sufficiently precise to prove the correctness of small but non-trivial mutual
exclusion algorithms, and that it scales well, allowing the analysis of a few hun-
dreds (albeit small) threads in a matter of minutes. An experimental comparison

with ConcurInterproc [18] shows that our approach is several orders of magni-
tude more scalable, with a comparable level of precision.

Limitations. We assume a sequentially consistent execution model [22], i.e., the
execution of a concurrent program is an interleaving of executions of its threads.
We ignore the additional difficulty caused by weakly consistent memories [1];
indeed, we believe that an extension to weakly consistent memories is possible,
but orthogonal to our work. Our analysis is nevertheless useful with respect to
a model obeying the “data-race freedom guarantee” as it can be easily extended
to detect data races (a race is simply a read or write instruction at a control-
point where some interference can occur). An additional limitation is that we
consider a fixed number of threads. Our method can be extended to consider
several instances of threads, possibly an unbounded number, while keeping a
fixed, finite number of variables in the abstract. We would employ a uniform
abstraction: firstly, thread variables are replaced with summary abstract vari-
ables that account for all the possible instances of that variable; secondly, we add
interference from a thread to itself, to account for the effect of one instance of a
thread on another instance of the same thread. This would achieve a sound, but
uniform analysis (unlike [12]). More importantly, our implementation is only a
limited prototype. We analyze small programs written in a basic language with
no functions and only numeric variables. Yet, these programs are inspired from
actual algorithms and challenging parts of real programs. We focus on scalability
in the number of threads, and did not include in our prototype state-of-the-art
abstractions necessary to handle full languages and achieve scalability for large
data space (as done in [27]). Indeed, our prototype employs a polyhedron domain
to relate all the variables of all the threads, without any form of packing. The
extension to realistic languages and experimentation on larger programs is thus
left as future work. Finally, the control partitioning we currently use relies on
user annotations (Sec. 3.5), although it could easily be automated (e.g., using
heuristics to detect which program parts are likely to be critical sections).

Outline. The rest of the article is organized as follows: Sec. 2 introduces a sim-
ple numeric multi-threaded language and its thread-modular concrete semantics;
Sec. 3 presents our abstract, computable semantics, parameterized by a classic
numeric abstraction; Sec. 4 presents our prototype implementation and our ex-
perimental results; Sec. 5 discusses related work and Sec. 6 concludes.

2 Concrete semantics of the analysis

2.1 Programs

We focus on a simple language presented in Fig. 2. A program is a set of threads,
defined over a set of global variables. There are no local variables in our language:
they are transformed into global variables. The construction [k1, k2] is the syntax
for a random number chosen between k1 and k2. It expresses non-determinism,
useful to model, for instance, program inputs.

〈arithmetic expressions〉 ::= k ∈ Z | [k1, k2] | X ∈ V | a1 † a2, † ∈ {+,−,×, /,%}
〈boolean expressions〉 ::= b1 • b2 | not b1 | a1 � a2

• ∈ {∨,∧}, � ∈ {<,>,≤,≥,=, 6=}
〈threads〉 ::= c1 ; c2 | l1 if b then l2c1 else l3c2 fi l4

| while l1b do l2 c od l3 | l1X ← el2

〈program〉 ::= thread 1 || thread 2 || ... || thread n

Fig. 2: Simple language to analyze.

We assume we have a fixed number of threads T : in particular, there is no
dynamic creation of threads. L is the set of program points, and V is the set of
variables. A control state associates a current control point to each thread. It is
defined as C = T → L. A memory state maps each variable to a value; the domain
of memory states isM = V → Z and the domain of program states is S = C×M.
An interference is created by a thread when it assigns a value to a variable. It can
be seen as a transition between two program states. The interference domain is
denoted as I = T ×(S×S). An interference (t, (c1, ρ1), (c2, ρ2))means that, when
the memory state is ρ1 ∈M and the control points are defined on every thread
using c1 ∈ C, the execution of thread t changes the memory state into ρ2, and
the control points are now defined using c2. Moreover, an interference generated
by a threat t changes only the control point of t, so: ∀t′ ∈ T \{t}, c1(t′) = c2(t

′).

2.2 Thread-modular concrete semantics

We present in Fig. 3 a concrete semantics of programs with interference, using
an accumulating semantics. By accumulating semantics, we mean that (R, I) ⊆
SJstatKt(R, I): the analysis adds new reachable states to R and interference to
I, keeping already accumulated states and interference intact. It is important to
gather the set of all interference accumulated during all possible executions of
each thread, to inject into the analysis of other threads, and we also accumulate
states to keep a consistent semantic flavor. Such a semantics is also the natural
result of specializing the thread-modular reachability semantics of [27] to the
transition systems generated by our language (left implicit here for space rea-
sons). EJexprKρ is the usual evaluation of an arithmetic or a boolean expression
expr given a memory state ρ. Its signature is EJexprK :M→ P(Z), due to the
non-determinism of [k1, k2]. Intuitively, the analysis is the iteration of two steps:

1. For each thread t, analyze t and take into account any number of “valid”
interference created by other threads.

2. For each thread t, collect the interference created by this thread t.

In Eq. (1), we express the fact that SJstatKt needs a statement stat of a
thread t, a global program state, and a set of interference, in order to compute
a resulting program state and a new set of interference. The interference given
in input is used to compute the effect of the other threads on thread t. The set

SJstatKt,BJbexprKt : P(S)× P(I)→ P(S)× P(I) (1)

SJl1X ← el2Kt(R, I) = (2)
let I1 = {(t, (c, ρ), (c[t 7→ l2], ρ[X 7→ v])) | (c, ρ) ∈ R, v ∈ EJeKρ, c(t) = l1} in
let R1 = {(c′, ρ′) | ∃(c, ρ), (t, (c, ρ), (c′, ρ′)) ∈ I1} in
let R2 = lfp λS. itf (S, t, I, R1) in R ∪R2, I ∪ I1

BJl1bl2Kt(R, I) = (3)
let I1 = {(t, (c, ρ), (c[t 7→ l2], ρ) | (c, ρ) ∈ R, true ∈ EJeKρ, c(t) = l1} in
let R1 = {(c′, ρ′) | ∃(c, ρ), (t, (c, ρ), (c′, ρ′)) ∈ I1} in
let R2 = lfp λS. itf (S, t, I, R1) in R ∪R2, I ∪ I1

itf : (S, t, I, R) 7→ R ∪ {(c′, ρ′) | ∃t′ ∈ T \ {t}, (c, ρ) ∈ S, (t′, (c, ρ), (c′, ρ′)) ∈ I}

SJstat1 ; stat2Kt = SJstat2Kt ◦ SJstat1Kt

SJl1 if b then l2 tt else l3ff fi l4KtX = (4)

let T = SJl2 tt l4Kt(BJl1bl2KtX) in

let F = SJl3ff l4Kt(BJl1¬bl3KtX) in
X ∪̇ T ∪̇ F where ∪̇ is the element-wise union on pairs

SJwhile l1b do l2c odl3KtX = (5)

X ∪̇ BJl1¬bl3Kt(lfp λY.(X ∪̇ SJl2cl1Kt(BJl1bl2KtY)))

(a) Thread-modular concrete semantics.

f :

{
P(S)× P(I) −→ P(S)× P(I)

(R, I) 7−→ ∪̇t∈T SJstatstKt(R ∪ S0, I)

(b) Definition of the thread-modular analysis operator f .

Fig. 3: Definition of the concrete analysis.

of all interference, including those collected during this analysis, is given in the
output. Similarly, we can filter a domain with a boolean expression using BJbKt.
In that case, the new interference only reflects the change in control point.

We now detail the concrete semantics, presented in Fig. 3a. In Eq. (2), I1 is
the interference created by the new assignment X ← e: it is a transition from
the state before the assignment to the state after the assignment. R1 is the
set of program states before any interference is applied (only the assignment is
applied). In R2, the function itf applies one interference to the set of states S,
i.e., a transition that can be performed by another thread t′ 6= t according to the
interference set I. As an arbitrary number of transitions from other threads can
be executed between two transitions of the current thread, we actually apply the
reflexive transitive closure of this interference relation, which can be expressed

as the least fixpoint (lfp) of itf . This fixpoint is computed on (P(S),⊆); it exists
as λS. itf (S, t, I, R) is monotonic. We note that the computation of I1 is very
similar to the transfer function for the assignment in the usual sequential case
(SJl1X ← el2K(R) = {(c[t 7→ l2], ρ[X 7→ v]) | (c, ρ) ∈ R, v ∈ EJeKρ}); our
thread-modular semantics applies such an operation, followed by interference-
related computations. We will use this remark in the next section to design an
abstract thread-modular semantics on top of well-known abstract operators for
sequential programs. This will allow us to reuse existing abstract domains and
know-how in our concurrent analysis. Equation (3) is quite similar: we create a
new instance of interference, that can change the control points from l1 to l2 if
b is satisfied. This way, R1 is the set of program states obtained just after the
boolean filtering has been applied. Then, we collect the reachable states found
when applying interference caused by the other threads. The computation of R2

is the same in Eqs. (2) and (3), and relies on the fixpoint computation of itf .
The rules for the other statements (sequences, conditionals, loops) are similar

to the usual semantics for sequential programs. These rules can be reduced to
the rules of assignment and boolean filtering by induction over the syntax.

Let statst be the statement body of thread t, and S0 be the set of initial
program states. The thread-modular concrete semantics is defined as computing
lfp f , where f is defined in Fig. 3b. This fixpoint is computed over the lifting of
powersets; it exists as f is increasing. When f is called, it analyzes each thread
once and returns two sets: the accumulated program states and the accumulated
interference. During the first few iterations, some pieces of interference are not
discovered yet, so the analysis may not be sound yet. When the set of interfer-
ence is stable, however, the analysis is sound: all execution cases are taken into
account. This is why we compute a fixpoint of f , and not only the first iterations.

The soundness and completeness (for state properties) of this semantics was
proved in [26,27] on an arbitrary transition system. This semantics is naturally
too concrete to be computable. We will abstract it in the next section.

3 Abstract semantics

Compared to the semantics of a sequential program, the semantics of the previous
section embeds a rich and precise control information due to the possible thread
preemption, which makes it difficult to analyze efficiently. In order to be able to
reuse classic state abstraction techniques, we first reduce the complexity of the
control information by abstraction in Sec. 3.1. Then, we simplify our analysis by
abstracting the memory states and the interference into numeric domains.

3.1 Abstractions of states and interference

We suppose we are given a partition of control locations L into a set L# of
abstract control locations, through some abstraction αL : L → L#, which is
extended pointwise to control states as α̇L : (T → L) → (T → L#). In our

αM(t) :

{
P(S) −→ L → P(M)
X 7−→ λL.{e | (c, e) ∈ X ∧ c(t) = L} (6)

αC :

{
P(I) −→ T → P(((T → L#)×M)2)
X 7−→ λt.{((α̇L(cb), b), (α̇L(ce), e)) | (cb, ce) ∈ C2, (t, (cb, b), (ce, e)) ∈ X}

(7)

γD# : (L → D#) −→ (L → P(M)) (8)

γI# : (T → I#) −→ (T → P(((T → L#)×M)2) (9)

Fig. 4: Abstractions and concretizations of states and interference.

implementation, control locations are manually specified using a program anno-
tation, and the automatic determination of a good partitioning is left as future
work. This function is used to abstract interference information, as shown by the
function αC in Eq. (7). In contrast, for program states, our control abstraction
αM(t) in Eq. (6) keeps the control information c(t) ∈ L intact for the current
thread and abstracts away the control information c(t′) of other threads t′ 6= t,
hence the shift from control in C = T → L to control in L, which makes the
analysis of a thread rather similar to a flow-sensitive sequential analysis. The
abstract semantics presented in the next section will have its precision and com-
putational cost strongly dependent upon the choice of L#.

3.2 Thread-modular abstract semantics

We assume we are given an arbitrary numeric domain D# to abstract the con-
tents of the program states, and denote by γD# the associated concretization
function. Likewise, we assume that an arbitrary numeric domain I# is provided
to abstract interference, and denote by γI# its concretization. The signatures of
these concretizations are given in Eqs. (8) and (9). Our concrete states feature
control point information as well as numeric variables. This is translated in the
abstract domains D#, I# by two types of variables: original numeric variables,
and auxiliary control point variables, called aux_t for t ∈ T . We thus consider
here that numbers are used as control points L in order to stay within the realm
of numeric domains. Moreover, interference abstraction is partitioned by thread.

As the sets of interference are abstracted into a relational numeric domain,
we can represent a transition using an initial, non-primed variable, and a final,
primed variable. For example, to express that x can change from 1 to 2, we write
x = 1∧x′ = 2. Similarly, an interference increasing a variable x, can be written as
x′ ≥ x+1. We show how we can use existing numeric abstract domains used in the
analysis of sequential programs to abstract our concrete thread-modular analysis.
We assume given abstract operations, such as simultaneously assigning a set of
arithmetic expressions A to a set of variables, adding uninitialized variables,
renaming and deleting variables. The signature of these functions is presented
in Fig. 5. We also suppose we have a join and a meet (abstracting respectively

assign : X# × P(V ×A)→ X# add : X# × P(V)→ X#

rename : X# × P(V2)→ X# delete : X# × P(V)→ X#

Fig. 5: Signatures of usual abstract operators with X# ∈ {D#, I#}.

extend :

{
D# −→ I#
R# 7−→ add(R#, {x′ | x ∈ Var(R#)})

img :

I# −→ D#

I# 7−→ let X = {x ∈ Var(I#) | x′ ∈ Var(I#)} in
let R#

1 = delete(I#, X) in
rename(R#

2 , {(x′, x) | x ∈ X})

apply :

D# × I# −→ D#

R#, I# 7−→ let R#
1 = extend(R#) in

let R#
2 = R#

1 ∩# I# in
img(R#

2)

Fig. 6: Definition of extend , img and apply .

the union and the intersection), and a widening operator, respectively denoted
∪#, ∩#, and O. These are standard operations, implemented in abstract domain
libraries, such as Apron [19] and BddApron [17].

We now define a function apply , applying an instance of interference to a
numeric domain. In a sense, apply gives the image of an abstract domain under
an abstract interference relation. We first implement two auxiliary functions,
called extend and img , defined in Fig. 6. We introduce a new function Var
associating to each abstract domain its variables. The function extend creates
a copy of every variable in the abstract domain, thus creating an interference
relation. On the other hand, img returns the image set of an interference relation.
With these two functions, we can now give a procedure computing the result of
applying a piece of interference, given an initial abstract memory domain: we first
add primed copies of the variables of the abstract memory domain. We can then
intersect the resulting abstract memory domain R#

1 with the interference. Then,
we have to get the image of the relation, which is the part where the variables
are primed. The obtained abstract domain is restricted to the states reachable
after an instance of interference is applied to the abstract initial domain.

The abstract semantics is presented in Fig. 7a. We abstract the concrete
semantics of Eq. (2) and Eq. (3) in Eq. (11) and Eq. (12). The transition from the
concrete to the abstract semantics is straightforward, by composition of apply ,
assign, extend , and img . We only briefly comment on the definition of Eq. (11),
as Eq. (12) is similar. I#l′′ represents any interference starting from the abstract
state R#(l1) (by definition of extend). Then, we constrain this interference so

S#JstatKt : (L → D#)× (T → I#) −→ (L → D#)× (T → I#) (10)

S#Jl1X ← el2Kt(R#, I#) = (11)

let I#l′′ = extend(R#(l1)) in

let I#l′ = assign(I#l′′ , {(X
′, e)} ∪ {(Y ′, Y) | Y ∈ Var(R#) \ {X, aux_t}}) in

let I#l = assign(I#l′ , {(aux_t, αL(l1)), (aux_t’, αL(l2))}) in

let R#
1 = img(I#l) in

let R#
2 = limλY #. Y #Oitf #(Y #, t, I#, R#

1) in

R#[l2 7→ R#(l2) ∪# R#
2], I#[t 7→ I#(t) ∪# I#l]

B#Jl1bl2Kt(R#, I#) = (12)

let I#l′′ = extend(F#JbK(R#(l1))) in

let I#l′ = assign(I#l′′ , {(Y
′, Y) | Y ∈ Var(R#) \ {aux_t}) in

let I#l = assign(I#l′ , {(aux_t, αL(l1)), (aux_t’, αL(l2))}) in

let R#
1 = img(I#l) in

let R#
2 = limλY #. Y #Oitf #(Y #, t, I#, R#

1) in

R#[l2 7→ R#(l2) ∪# R#
2], I#[t 7→ I#(t) ∪# I#l]

itf # : (S#, t, I#, R#) 7→ R# ∪#
⋃#

t′∈T \{t}

apply(S#, I#(t′))

S#Jl1 if b then l2 tt else l3ff fi l4KtX# =

let T = S#Jl2 tt l4Kt ◦ B#Jl1bl2KtX# in

let F = S#Jl3ff l4Kt ◦ B#Jl1¬bl3KtX# in

X#∪̇#
T ∪̇#

F

S#Jwhile l1b do l2c odl3KtX =

X#∪̇#B#Jl1¬bl3Kt(limλY.Y Ȯ (X# ∪̇# S#Jl2cl1Kt ◦ B#Jl1bl2KtY))

(a) Definition of the abstract semantics.

f# :

{
(T → (L → D#))× (T → I#) −→ (T → (L → D#))× (T → I#)

(R#, I#) 7−→ λt.R′#
t , ∪̇#

t∈T I
′#
t

with R′#
t , I ′#t = S#JstatstKt(R#(t) ∪# S#

0 , I#)

(b) Definition of the analysis operator f#.

γ :

{
(T → (L → D#))× (T → I#) −→ P(S)× P(I)

(r, i) 7−→
⋃

t∈T γM(t) ◦ γD#(r(t)), γC ◦ γI#(i)

(c) Definition of the main concretization.

Fig. 7: Definitions of our abstract analysis.

that I#l represents interference from R#(l1) to the state of the program just after
the assignment is done. I#l is by construction the abstract version of I1 from
Eq. (2). Recall that aux_t are auxiliary variables representing control locations,
and that αL returns a numeric abstract control point. By construction of img ,
R#

1 is the abstract version of R1, representing the image of the interference I#l .
R#

2 represents all reachable states after any possible interference has been applied
to R#

1 . This concludes the case of assignments. The if and while statements are
abstracted in a classic way, by induction on the syntax. As usual [7], we changed
the lfp operators into limits of an iteration with widening, so that convergence
is ensured. F#JbK is the usual abstract boolean filtering operator.

The abstract version f# of the analysis operator f from Fig. 3b is defined in
Fig. 7b. S#

0 represents the abstracted initial program states, abstracting S0.

3.3 Soundness of the analysis

We first define a concretization operator going from our abstract states to our
concrete ones, before stating the soundness result. Fig. 7c presents the global
concretization, where γM(t) and γC are the adjoints associated to the abstrac-
tions αM(t) and αC presented in Fig. 4. The analysis presented is sound, i.e.:

lfp f ⊆ γ(limλY.Y ∇̇ f#(Y))

3.4 Retrieving flow-insensitive interference analysis

The analysis presented in Sec 3.2 can by very costly, depending on the choice
of L#. For many analyses, choosing L# to be a singleton is sufficient to be
precise enough and having an easily computable analysis. In that case, the set
of interference becomes flow-insensitive, and the analysis is an extension of ex-
isting analyses. For example, the thread-modular analysis presented in [28] is
non-relational and can be retrieved by choosing a non-relational domain for I#
and L# to be a singleton. On the contrary, when choosing L# to be L, the anal-
ysis would be roughly equivalent to analyzing the product of the control flow
graphs (the main difference being that the control information would be stored
in auxiliary variables, and possibly subject to numeric abstraction).

3.5 On the way to proving mutual exclusion: growing L#

When L# is a singleton, the interference set is too coarse, and some properties
are impossible to prove. For example, to verify mutual exclusion properties, we
need to use a separate abstract control point at the beginning of the critical
section to partition the abstract state. This is what we call control partitioning.
In order to partition the abstract state, we need a richer L#.

Let us consider Peterson’s mutual exclusion algorithm as described in Con-
curInterproc [18], and presented in Fig. 8. We suppose that b0, b1, and turn
are boolean variables, and that at the beginning, ¬b0 ∧ ¬b1 holds. If there is

1

2
3
4
5

Thread 1
b1← true

turn← false
while(b2 ∧ ¬turn) do skip od
skip
b1← false

Thread 2
b2← true

turn← true
while(b1 ∧ turn) do skip od
skip
b2← false

Fig. 8: Peterson’s mutual exclusion algorithm.

no control point separation between lines 1-3 and 4-5, then, the following execu-
tion order is possible: we first execute lines 1-2 of each thread. We suppose that
then, turn is true (the other case is symmetric). At that point, the condition
in the while loop of Thread 1 is satisfied, and, in Thread 2, the interference
b1′ = ¬b1 (created at line 5 in Thread 1) can be applied, enabling the two
threads to access simultaneously the mutual exclusion section, here embodied
by the skip statements. If a label separation is created, instead, this spurious
execution is not possible anymore, and mutual exclusion is actually inferred.
Indeed, let us set L# = {[1, 3]; [4, 5]} for both threads. This time, when the
variable turn holds, the control state is (1, 2) 7→ (3, 4), and we cannot apply the
interference b1′ = ¬b1 of Thread 1: we are at label 3, and 3 6∈ [4, 5]. In all the
cases we observed in practice (discussed in the following section), splitting the
control locations at the beginning of the critical section provides a sufficient gain
in precision to infer mutual exclusion.

4 Implementation and experimental results

4.1 Implementation

We implemented an analyzer prototype, called Batman, in order to assess the
precision and scalability of our analysis. It consists of roughly 1700 lines of
OCaml code, and can use either the Apron [19] or BddApron [17] libraries to
manipulate abstract domains. We implemented a simple widening with thresh-
olds, as well as increasing and decreasing iterations. The analyzer uses functors,
so that switching from one relational domain to another is easy. In order to
show the benefit of thread-modular analyses, we compare our results with those
obtained by ConcurInterproc [18], another academic analyzer for numeric prop-
erties of multi-threaded programs, which is relational but not thread-modular.
We use a similar type of language: it supports a fixed number of integer and
boolean variables, if and while statements, assignments, and a fixed number of
threads. Our analyzer does not support procedures, unlike ConcurInterproc.

4.2 Precision of the analysis

Batman is able to automatically infer the relational invariants described previ-
ously. We present the results we obtained on some examples.

Relational analysis. Using our fully relational analysis, we are able to prove
more properties on the example provided in Fig. 1 than what was presented
in [27], because the assignment x ← (x + y)/2 is keeping the invariant x ≤ y.
This cannot be expressed using the analysis provided in [27]. Moreover, invari-
ants are simpler to express using the polyhedron-based interference: x+ 1 ≤ x′

means that when this interference is applied, it increases x. We experimented on
several simple examples proposed in recent work [27]. The results are presented
in Table 9b. The flow-sensitivity column describes whether the abstraction of
interference was flow-sensitive (i.e., L# is not a singleton) or flow-insensitive.

Mutual exclusion algorithms. We are also able to analyze classic mutual
exclusion algorithms such as Peterson’s algorithm [29], presented in Fig. 8, and
Lamport’s Bakery algorithm [23]. To infer the mutual exclusion property auto-
matically, we need to give the analyzer a partition of the control points, and we
use a simple annotation system for this. Splitting the control locations at the
beginning of the critical section was sufficient for all our tests. We also need the
interference abstraction to be relational to infer mutual exclusion. Partitioning
heuristics could be developed to improve the automation of the analysis. These
heuristics were not in the prototype used for our experiments due to lack of time,
and their development is left for future work.

4.3 Scalability of the analysis

We also studied the scalability of the analysis as a function of the number of
threads. We thus considered algorithms able to synchronize an arbitrary number
of threads. Note that the polyhedral domain does not scale up with the number
of variables; hence, there is no hope to scale up in the number of threads for
algorithms that require additional variables for each thread. We performed some
experiments with both the polyhedron and the more scalable octagon domain.

Ideal case. In order to study the scalability limit of the thread-modular analysis
independently from the scalability of the numeric domain, we can consider the
ideal case of programs where the number of global variables is fixed, whatever
the number of threads. As example, we present, in Fig. 9a, a simple mutual
exclusion algorithm based on token passing, with only two variables, and show
that our method scales up to hundreds of threads, while ConcurInterproc does
not. In this example, we used the polyhedral domain. As the numeric domain
is a parameter of our analysis, we can consider the scalability in the number of
variables to be an orthogonal problem to that of the scalability in the number
of threads, and this article addresses the later rather than the former.

Lamport’s Bakery algorithm. We tested the scalability of Lamport’s Bakery
algorithm, ensuring mutual exclusion for an arbitrary number n of threads. How-
ever, the number of variables for the global program is linear in n, and the size
of the whole program is quadratic in n (this is a consequence of our encoding of
arrays into scalar variables). This setting does not really promise to be scalable,

Thread 1
while true do

while f != 1 do
skip

od
X ← 1
f ← [1, 3]

od

Thread 2
while true do

while f != 2 do
skip

od
X ← 2
f ← [1, 3]

od

Thread 3
while true do

while f != 3 do
skip

od
X ← 3
f ← [1, 3]

od

(a) Analysis of a token-passing mutual exclusion algorithm.

Reference Flow- Results Time,
(in [27]) sensitivity polyhedron
Fig. 1 7 0 ≤ X ≤ Y 0.30s
Fig. 4 7 0 ≤ T ≤ L ≤ C ≤ H ≤ 104 0.26s
Fig. 5 (a) 7 0 ≤ X 0.44s
Fig. 5 (a) 3 0 ≤ X ≤ 100 0.35s
Fig. 5 (b) 7 thread 1: X ≤ Y ≤ 100 0.78s

thread 2: 0 ≤ Y ≤ X
Fig. 5 (b) 3 0 ≤ X = Y ≤ 100 0.44s

Algorithm Number Flow- Mutual Time, Time,
name of threads sensitivity exclusion polyhedron octagons

Peterson 2 3 3 0.67s 0.72s
Lamport 3 3 3 6.5s 27s
Lamport 4 3 3 49s 6m 33s
Lamport 5 3 3 5m 10s 49m 45s
Lamport 6 3 3 – 151m 8s
Lamport 7 3 3 – 12h

(b) Analysis result.

Fig. 9: Experimental evaluation of our approach.

but we are still able to analyze up to 7 threads, and the mutual exclusion is
inferred each time. As mentioned above, to infer the mutual exclusion property
within the critical section, both the flow-sensitive and relational properties of
the interference are required. For each thread, we have two different elements of
L#, one before the critical section and one after. This is sufficient to infer the
mutual exclusion property. The results are presented in Table 9b. ConcurInter-
proc seems to be unable to infer the mutual exclusion, and is less scalable here:
it takes 90 seconds to analyze 3 threads, and 22 hours to analyze 4 threads.

5 Related Work

Many articles have been devoted to the analysis of multi-threaded programs.
We cite only the most relevant. Our article can be seen as an extension of the
first thread-modular abstract interpreters [5,25] that were non-relational and
flow-insensitive. We achieve higher levels of precision, when parameterized with
relational domains. We build on a theoretical framework for complete concrete
thread-modular semantics [27]. However, while [27] then explores the end of
the spectrum concerned with scalable but not very precise analyses (using re-
lationality only in a few selected points), we explore the other end in order
to prove properties of small but intricate programs not precisely analyzed by
[27]. We also study the scalability of fully-relational analyses for large numbers
of threads. ConcurInterproc [18] is a static analyzer for concurrent programs.
It is not thread-modular and, as shown in our benchmarks, does not scale as
well as our approach, even though both use the same polyhedral numeric ab-
straction. Kusano and Wang [21] extend the flow-insensitive abstract interpreta-
tion of [5,25] by maintaining flow-sensitive information about interference using
constraints, while not maintaining numeric information on them; hence, their
method is complementary to ours. Farzan and Kincaid [12] also model interfer-
ence in a thread-modular abstract interpreter using constraints, but focus instead
on parameterized programs with an unbounded number of thread instances.

Modular verification techniques for concurrent programs also include flow
analyses. Dwyer [11] proposed a flow method to check properties expressed
with finite automata. Grunwald and Srinivasan [15] consider the reaching defi-
nition problem for explicitly parallel programs. These works focus on monotone
dataflow equations, which is not the general case for abstract interpretation.

Model-checking of concurrent programs is a very well developed field. To
prevent the state explosion problem in the specific case of concurrent programs,
partial order reduction methods have been introduced by Godefroid [13]. Our
method differs in that we do not have to consider explicit interleavings, and that
we employ abstractions, allowing a loss of precision to achieve a faster analysis.
A more recent method to reduce the cost of model-checking consists in only
analyzing a program up to a fixed number of interleavings [30]. Our approach
differs as we retain the soundness of the analysis. Counter-example guided ab-
stract refinement methods have also been adapted to concurrent programs; one
such example is [10]. As in the case of analyzing sequential programs, these

methods are based on a sequence of analyses with increasingly more expressive
finite abstract domains of predicates, which may not terminate. By contrast,
our method is based on abstract interpretation, and so iterates in (possibly
infinite) abstract domains employing widenings to ensure termination. Thread-
modular model-checking has also been advocated, as in [6], which helps with
the scalability issue. However, the method uses BDDs, and is thus limited to
finite data-spaces. By contrast, we employ abstract interpretation techniques in
order to use infinite-state abstract domains (such as polyhedra). [14] proposes
a general framework to express and synthesize a large variety of static analyses
from sets of rules, based on Horn clauses, which includes rely-guarantee analyses
for multi-threaded programs; while [16] proposes a related approach based on
constraints. Following predicate abstraction and CEGAR methods, the memory
abstraction in these works is often limited by the inherent Cartesian abstraction
[24], which cannot thus infer relations between variables from different threads.

6 Conclusion

We have proposed a general analysis by abstract interpretation for numeric prop-
erties of concurrent programs that is thread-modular, takes soundly into account
all the thread interleavings, and is parameterized by a choice of numeric and con-
trol abstractions. The novelty of our approach is its ability to precisely control
trade-offs between cost and precision when analyzing thread interference, from
a coarse, flow-insensitive and non-relational abstraction (corresponding to the
state-of-the-art) to fully flow-sensitive and relational abstractions. We showed
on a few simple example analyses with our prototype that relational interference
allows proving properties that could only be handled by non-modular analyses
before, while we also benefit from the scalability of thread-modular methods. We
believe that this opens the door to the design of scalable and precise analyses of
realistic concurrent programs, provided that adequate abstractions are designed.

Future work will include designing such abstractions, and in particular de-
signing heterogeneous abstractions able to restrict the flow-sensitivity and rela-
tionality to program parts requiring more precision. We would also like to remove
the current limitation that every variable is considered to be global and appears
in all thread-local and interference abstractions, which limits the scalability of
our analysis. It would also be interesting to have a more comprehensive ex-
perimental evaluation, as well comparisons with other approaches. Fine-grained
control of which variables are taken into account in each abstraction should be
possible using packing techniques or weakly relational domains [2,3]. Likewise,
the control abstraction used in the interference is currently set manually, but we
believe that automation is possible using heuristics (such as guessing plausible
locations of critical sections). We consider integrating this method into [27] in or-
der to gain more precision when necessary while retaining the overall scalability.
Other future work includes handling weakly consistent memories, and the non-
uniform analysis of unbounded numbers of threads, which requires integrating
other forms of abstractions into our analysis.

References

1. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: POPL’10. pp. 7–18. ACM (Jan 2010)

2. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis and verification of aerospace software by abstract interpretation.
In: AIAA Infotech@Aerospace. pp. 1–38. No. 2010-3385, AIAA (Apr 2010)

3. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI’03. pp.
196–207. ACM (June 2003)

4. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: FMPA’93.
LNCS, vol. 735, pp. 128–141. Springer (June 1993)

5. Carré, J.L., Hymans, C.: From single-thread to multithreaded: An efficient static
analysis algorithm. Tech. Rep. arXiv:0910.5833v1, EADS (Oct 2009)

6. Cohen, A., Namjoshi, K.S.: Local proofs for global safety properties. Formal Meth-
ods in System Design 34(2), 104–125 (2008)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL’77.
pp. 238–252. ACM (Jan 1977)

8. Cousot, P., Cousot, R.: Invariance proof methods and analysis techniques for par-
allel programs. In: Automatic Program Construction Techniques, chap. 12, pp.
243–271. Macmillan, New York, NY, USA (1984)

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL’78. pp. 84–97. ACM (1978)

10. Donaldson, A., Kaiser, A., Kroening, D., Tautschnig, M., Wahl, T.:
Counterexample-guided abstraction refinement for symmetric concurrent pro-
grams. Formal Methods in System Design 41(1), 25–44 (2012)

11. Dwyer, M.B.: Modular flow analysis for concurrent software. In: ASE’97. pp. 264–
273. IEEE Computer Society (1997)

12. Farzan, A., Kincaid., Z.: Duet: Static analysis for unbounded parallelism. In:
CAV’13. LNCS, vol. 8044, pp. 191–196 (2013)

13. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems
– An Approach to the State-Explosion Problem. Ph.D. thesis, University of Liege,
Computer Science Department (1994)

14. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI’12. pp. 405–416. ACM (2012)

15. Grunwald, D., Srinivasan, H.: Data flow equations for explicitly parallel programs.
In: PPOPP ’93. pp. 159–168. ACM (1993)

16. Gupta, A., Popeea, C., Rybalchenko, A.: Threader: A constraint-based verifier
for multi-threaded programs. In: CAV’11. LNCS, vol. 6806, pp. 412–417. Springer
(2011)

17. Jeannet, B.: BddApron, http://pop-art.inrialpes.fr/~bjeannet/
bjeannet-forge/bddapron/bddapron.pdf

18. Jeannet, B.: Relational interprocedural verification of concurrent programs. Soft-
ware & Systems Modeling 12(2), 285–306 (2013)

19. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: CAV’09. LNCS, vol. 5643, pp. 661–667. Springer (2009)

20. Jones, C.B.: Development Methods for Computer Programs including a Notion of
Interference. Ph.D. thesis, Oxford University (Jun 1981)

http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/bddapron.pdf
http://pop-art.inrialpes.fr/~bjeannet/bjeannet-forge/bddapron/bddapron.pdf

21. Kusano, M., Wang, C.: Flow-sensitive composition of thread-modular abstract in-
terpretation. In: FSE 2016. pp. 799–809. ACM (2016)

22. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. In: IEEE Trans. on Computers. vol. 28, pp. 690–691. IEEE
Comp. Soc. (Sep 1979)

23. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Com-
munications of the ACM 17(8), 453–455 (1974)

24. Malkis, A., Podelski, A., Rybalchenko, A.: ICTAC 2006, LNCS, vol. 4281, chap.
Thread-Modular Verification Is Cartesian Abstract Interpretation, pp. 183–197.
Springer (2006)

25. Miné, A.: Static analysis of run-time errors in embedded critical parallel C pro-
grams. In: ESOP’11. LNCS, vol. 6602, pp. 398–418. Springer (Mar 2011)

26. Miné, A.: Static analysis by abstract interpretation of sequential and multi-thread
programs. In: Proc. of the 10th School of Modelling and Verifying Parallel Processes
(MOVEP 2012). pp. 35–48 (3–7 Dec 2012)

27. Miné, A.: Relational thread-modular static value analysis by abstract interpreta-
tion. In: VMCAI’14. LNCS, vol. 8318, pp. 39–58. Springer (Jan 2014)

28. Miné, A.: Static analysis of run-time errors in embedded real-time parallel C pro-
grams. Logical Methods in Computer Science (LMCS) 8(26), 63 (Mar 2012)

29. Peterson, G.L.: Myths about the mutual exclusion problem. Information Processing
Letters 12(3), 115–116 (1981)

30. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
TACAS’05. LNCS, vol. 3440, pp. 93–107. Springer (2005)

	Precise Thread-Modular Abstract Interpretation of Concurrent Programs using Relational Interference Abstractions
	Introduction
	Concrete semantics of the analysis
	Programs
	Thread-modular concrete semantics

	Abstract semantics
	Abstractions of states and interference
	Thread-modular abstract semantics
	Soundness of the analysis
	Retrieving flow-insensitive interference analysis
	On the way to proving mutual exclusion: growing L#

	Implementation and experimental results
	Implementation
	Precision of the analysis
	Scalability of the analysis

	Related Work
	Conclusion

