
Formalizing Date Arithmetic and
Statically Detecting Ambiguities for the Law

Raphaël Monat, Aymeric Fromherz, Denis Merigoux

rmonat.fr

ESOP
11 April 2024

rmonat.fr

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

I a DSL for computational laws
I providing transparency

I easing maintenance
I through interdisciplinary work

1

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

I a DSL for computational laws

I providing transparency
I easing maintenance
I through interdisciplinary work

1

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

I a DSL for computational laws
I providing transparency

I easing maintenance
I through interdisciplinary work

1

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

I a DSL for computational laws
I providing transparency

I easing maintenance

I through interdisciplinary work

1

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

I a DSL for computational laws
I providing transparency

I easing maintenance
I through interdisciplinary work

1

Computing dates

$ date -d "2024-01-31 + 1 month" +%F

2024-03-02
$ date -d "2024-02-01 + 1 month" +%F
2024-03-01

Non-monotonic behavior?!

2

Computing dates

$ date -d "2024-01-31 + 1 month" +%F
2024-03-02

$ date -d "2024-02-01 + 1 month" +%F
2024-03-01

Non-monotonic behavior?!

2

Computing dates

$ date -d "2024-01-31 + 1 month" +%F
2024-03-02
$ date -d "2024-02-01 + 1 month" +%F

2024-03-01

Non-monotonic behavior?!

2

Computing dates

$ date -d "2024-01-31 + 1 month" +%F
2024-03-02
$ date -d "2024-02-01 + 1 month" +%F
2024-03-01

Non-monotonic behavior?!

2

Computing dates

$ date -d "2024-01-31 + 1 month" +%F
2024-03-02
$ date -d "2024-02-01 + 1 month" +%F
2024-03-01

Non-monotonic behavior?!

2

A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)

I When do leapers become adults?

• 28 February in New Zealand, Taiwan
• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required! Focus on Gregorian calendar.

3

A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)
I When do leapers become adults?

• 28 February in New Zealand, Taiwan
• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required! Focus on Gregorian calendar.

3

A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)
I When do leapers become adults?

• 28 February in New Zealand, Taiwan

• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required! Focus on Gregorian calendar.

3

A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)
I When do leapers become adults?

• 28 February in New Zealand, Taiwan
• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required! Focus on Gregorian calendar.

3

A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)
I When do leapers become adults?

• 28 February in New Zealand, Taiwan
• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required!

Focus on Gregorian calendar.

3

A wide variety of date semantics

Different legal bodies and choices

I 1 month = 30 days (Council of European Communities)
I When do leapers become adults?

• 28 February in New Zealand, Taiwan
• 1 March in France, Germany, Hong-Kong

=⇒ Formal, flexible semantics required! Focus on Gregorian calendar.

3

Outline

1 Semantics

2 Formalized Properties

3 Rounding-insensitivity Static Analysis

4 Case Study: French Housing Benefits

5 Conclusion

4

Semantics

Semantics – Values

values v ::= (y,m,d) | ⊥
date unit δ ::= y | m | d
expressions e ::= v | e +δ n

nb_days(y,m) =

29 if m = 2 ∧ is_leap(y)

28 if m = 2 ∧ ¬is_leap(y)

30 if m ∈ {Apr,Jun,Sep,Nov }
31 otherwise

5

Semantics – Values

values v ::= (y,m,d) | ⊥
date unit δ ::= y | m | d
expressions e ::= v | e +δ n

nb_days(y,m) =

29 if m = 2 ∧ is_leap(y)

28 if m = 2 ∧ ¬is_leap(y)

30 if m ∈ {Apr,Jun,Sep,Nov }
31 otherwise

5

Semantics – invalid day number

Day additions with invalid day number propagate errors

Add-Days-Err1
day < 1

(y,m,day) +d n→ ⊥

Add-Days-Err2
day > nb_days(y,m)

(y,m,day) +d n→ ⊥

6

Semantics – invalid day number

Day additions with invalid day number propagate errors

Add-Days-Err1
day < 1

(y,m,day) +d n→ ⊥

Add-Days-Err2
day > nb_days(y,m)

(y,m,day) +d n→ ⊥

6

Semantics – invalid day number

Day additions with invalid day number propagate errors

Add-Days-Err1
day < 1

(y,m,day) +d n→ ⊥

Add-Days-Err2
day > nb_days(y,m)

(y,m,day) +d n→ ⊥

6

Semantics – some cases of month addition

Add-Month
1 ≤ mo+ n ≤ 12

(y,mo,d) +m n→ (y,mo+ n,d)

Add-Month-Over
mo+ n > 12

(y,mo,d) +m n→ (y + 1,mo,d) +m (n− 12)

Similar cases for Add-Month-Under, year, day addition.

7

Semantics – some cases of month addition

Add-Month
1 ≤ mo+ n ≤ 12

(y,mo,d) +m n→ (y,mo+ n,d)

Add-Month-Over
mo+ n > 12

(y,mo,d) +m n→ (y + 1,mo,d) +m (n− 12)

Similar cases for Add-Month-Under, year, day addition.

7

Semantics – some cases of month addition

Add-Month
1 ≤ mo+ n ≤ 12

(y,mo,d) +m n→ (y,mo+ n,d)

Add-Month-Over
mo+ n > 12

(y,mo,d) +m n→ (y + 1,mo,d) +m (n− 12)

Similar cases for Add-Month-Under, year, day addition.

7

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

8

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

8

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

8

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)

rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

8

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)

rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

8

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

8

Semantics – Rounding

(2024, 01, 31) +m 1→ (2024, 02, 31)

Rounding to valid dates required!

rounding mode r ::= ↑ | ↓ | ⊥
expressions e ::= v | e +δ n | rndr e

rnd↑(2024, 02, 31) = (2024, 03, 01)
rnd↓(2024, 02, 31) = (2024, 02, 29)
rnd⊥(2024, 02, 31) = ⊥

Coreutils-like rounding not defined here

8

Semantics – Rounding

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m,d) → (y,m,d)

Round-Down
d > nb_days(y,m)

rnd↓(y,m,d) → (y,m,nb_days(y,m))

Round-Up
d > nb_days(y,m) (y,m,d) +m 1

∗→ (y′,m′,d′)
rnd↑(y,m,d) → (y′,m′, 1)

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m,d) → ⊥

9

Semantics – Rounding

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m,d) → (y,m,d)

Round-Down
d > nb_days(y,m)

rnd↓(y,m,d) → (y,m,nb_days(y,m))

Round-Up
d > nb_days(y,m) (y,m,d) +m 1

∗→ (y′,m′,d′)
rnd↑(y,m,d) → (y′,m′, 1)

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m,d) → ⊥

9

Semantics – Rounding

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m,d) → (y,m,d)

Round-Down
d > nb_days(y,m)

rnd↓(y,m,d) → (y,m,nb_days(y,m))

Round-Up
d > nb_days(y,m) (y,m,d) +m 1

∗→ (y′,m′,d′)
rnd↑(y,m,d) → (y′,m′, 1)

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m,d) → ⊥

9

Semantics – Rounding

Round-Noop
1 ≤ d ≤ nb_days(y,m)

rndr(y,m,d) → (y,m,d)

Round-Down
d > nb_days(y,m)

rnd↓(y,m,d) → (y,m,nb_days(y,m))

Round-Up
d > nb_days(y,m) (y,m,d) +m 1

∗→ (y′,m′,d′)
rnd↑(y,m,d) → (y′,m′, 1)

Round-Err2
d > nb_days(y,m)

rnd⊥(y,m,d) → ⊥

9

Semantics

Date-period addition
Given a period (ys,ms,ds):

e+r (ys,ms,ds) ::= rndr((e+y ys) +m ms) +d ds

Avoids double rounding

Ambiguous expression

A date expression e is ambiguous iff rnd⊥(e)
∗→ ⊥

iff roundings e yield different values

10

Semantics

Date-period addition
Given a period (ys,ms,ds):

e+r (ys,ms,ds) ::= rndr((e+y ys) +m ms) +d ds

Avoids double rounding

Ambiguous expression

A date expression e is ambiguous iff rnd⊥(e)
∗→ ⊥

iff roundings e yield different values

10

Semantics

Date-period addition
Given a period (ys,ms,ds):

e+r (ys,ms,ds) ::= rndr((e+y ys) +m ms) +d ds

Avoids double rounding

Ambiguous expression

A date expression e is ambiguous iff rnd⊥(e)
∗→ ⊥

iff roundings e yield different values

10

Semantics

Date-period addition
Given a period (ys,ms,ds):

e+r (ys,ms,ds) ::= rndr((e+y ys) +m ms) +d ds

Avoids double rounding

Ambiguous expression

A date expression e is ambiguous iff rnd⊥(e)
∗→ ⊥

iff roundings e yield different values

10

Formalized Properties

Non-properties

Commutativity of addition

(2024, 03, 31) +↑ 1m+↑ 1d = (2024, 05, 01) +↑ 1d = (2024, 05, 02)

(2024, 03, 31) +↑ 1d+↑ 1m = (2024, 04, 01) +↑ 1m = (2024, 05, 01)

“Associativity” of addition

(2024, 03, 31) +↑ 1m+↑ 1m = (2024, 05, 01) +↑ 1m = (2024, 06, 01)

(2024, 03, 31) +r 2m = (2024, 05, 31)

11

Non-properties

Commutativity of addition

(2024, 03, 31) +↑ 1m+↑ 1d = (2024, 05, 01) +↑ 1d = (2024, 05, 02)
(2024, 03, 31) +↑ 1d+↑ 1m = (2024, 04, 01) +↑ 1m = (2024, 05, 01)

“Associativity” of addition

(2024, 03, 31) +↑ 1m+↑ 1m = (2024, 05, 01) +↑ 1m = (2024, 06, 01)

(2024, 03, 31) +r 2m = (2024, 05, 31)

11

Non-properties

Commutativity of addition

(2024, 03, 31) +↑ 1m+↑ 1d = (2024, 05, 01) +↑ 1d = (2024, 05, 02)
(2024, 03, 31) +↑ 1d+↑ 1m = (2024, 04, 01) +↑ 1m = (2024, 05, 01)

“Associativity” of addition

(2024, 03, 31) +↑ 1m+↑ 1m = (2024, 05, 01) +↑ 1m = (2024, 06, 01)

(2024, 03, 31) +r 2m = (2024, 05, 31)

11

Non-properties

Commutativity of addition

(2024, 03, 31) +↑ 1m+↑ 1d = (2024, 05, 01) +↑ 1d = (2024, 05, 02)
(2024, 03, 31) +↑ 1d+↑ 1m = (2024, 04, 01) +↑ 1m = (2024, 05, 01)

“Associativity” of addition

(2024, 03, 31) +↑ 1m+↑ 1m = (2024, 05, 01) +↑ 1m = (2024, 06, 01)
(2024, 03, 31) +r 2m = (2024, 05, 31)

11

Formalized properties

All formalized with the F? proof assistant.

I More in the paper & artefact.

I During our study, we used QCheck to test our intuition.

Well-formedness
For any date d, any period p, any value v, and r ∈ {↓, ↑}, we have:

valid(d) ∧ d+r p
∗→ v ⇒ valid(v)

12

Formalized properties

All formalized with the F? proof assistant.

I More in the paper & artefact.
I During our study, we used QCheck to test our intuition.

Well-formedness
For any date d, any period p, any value v, and r ∈ {↓, ↑}, we have:

valid(d) ∧ d+r p
∗→ v ⇒ valid(v)

12

Formalized properties

All formalized with the F? proof assistant.

I More in the paper & artefact.
I During our study, we used QCheck to test our intuition.

Well-formedness
For any date d, any period p, any value v, and r ∈ {↓, ↑}, we have:

valid(d) ∧ d+r p
∗→ v ⇒ valid(v)

12

Rounding-insensitivity Static Analysis

Meaningful ambiguities

Rounding choice can change comparisons
d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

When rounding up or down doesn’t change a computation
d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

=⇒ Prove rounding-insensitivity of an expression e

I E↑JeK = E↓JeK

encoded as sync(e)

I Considering product programs with both rounding modes
I Will reduce the need for costly legal interpretations

Delmas, Ouadjaout, and Miné. “Static Analysis of Endian Portability by Abstract Interpretation”. SAS 2021 13

Meaningful ambiguities

Rounding choice can change comparisons
d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

When rounding up or down doesn’t change a computation
d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

=⇒ Prove rounding-insensitivity of an expression e

I E↑JeK = E↓JeK

encoded as sync(e)

I Considering product programs with both rounding modes
I Will reduce the need for costly legal interpretations

Delmas, Ouadjaout, and Miné. “Static Analysis of Endian Portability by Abstract Interpretation”. SAS 2021 13

Meaningful ambiguities

Rounding choice can change comparisons
d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

When rounding up or down doesn’t change a computation
d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

=⇒ Prove rounding-insensitivity of an expression e

I E↑JeK = E↓JeK

encoded as sync(e)

I Considering product programs with both rounding modes
I Will reduce the need for costly legal interpretations

Delmas, Ouadjaout, and Miné. “Static Analysis of Endian Portability by Abstract Interpretation”. SAS 2021 13

Meaningful ambiguities

Rounding choice can change comparisons
d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

When rounding up or down doesn’t change a computation
d + 1 month <= April 15 2024

I No rounding? Safe

I Otherwise, the rounding of d + 1 month will not change the comparison.

=⇒ Prove rounding-insensitivity of an expression e

I E↑JeK = E↓JeK

encoded as sync(e)

I Considering product programs with both rounding modes
I Will reduce the need for costly legal interpretations

Delmas, Ouadjaout, and Miné. “Static Analysis of Endian Portability by Abstract Interpretation”. SAS 2021 13

Meaningful ambiguities

Rounding choice can change comparisons
d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

When rounding up or down doesn’t change a computation
d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

=⇒ Prove rounding-insensitivity of an expression e

I E↑JeK = E↓JeK

encoded as sync(e)

I Considering product programs with both rounding modes
I Will reduce the need for costly legal interpretations

Delmas, Ouadjaout, and Miné. “Static Analysis of Endian Portability by Abstract Interpretation”. SAS 2021 13

Meaningful ambiguities

Rounding choice can change comparisons
d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

When rounding up or down doesn’t change a computation
d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

=⇒ Prove rounding-insensitivity of an expression e

I E↑JeK = E↓JeK

encoded as sync(e)

I Considering product programs with both rounding modes
I Will reduce the need for costly legal interpretations

Delmas, Ouadjaout, and Miné. “Static Analysis of Endian Portability by Abstract Interpretation”. SAS 2021 13

Meaningful ambiguities

Rounding choice can change comparisons
d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

When rounding up or down doesn’t change a computation
d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

=⇒ Prove rounding-insensitivity of an expression e
I E↑JeK = E↓JeK

encoded as sync(e)
I Considering product programs with both rounding modes
I Will reduce the need for costly legal interpretations

Delmas, Ouadjaout, and Miné. “Static Analysis of Endian Portability by Abstract Interpretation”. SAS 2021 13

Meaningful ambiguities

Rounding choice can change comparisons
d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

When rounding up or down doesn’t change a computation
d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

=⇒ Prove rounding-insensitivity of an expression e
I E↑JeK = E↓JeK encoded as sync(e)

I Considering product programs with both rounding modes
I Will reduce the need for costly legal interpretations

Delmas, Ouadjaout, and Miné. “Static Analysis of Endian Portability by Abstract Interpretation”. SAS 2021 13

Meaningful ambiguities

Rounding choice can change comparisons
d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

When rounding up or down doesn’t change a computation
d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

=⇒ Prove rounding-insensitivity of an expression e
I E↑JeK = E↓JeK encoded as sync(e)
I Considering product programs with both rounding modes

I Will reduce the need for costly legal interpretations

Delmas, Ouadjaout, and Miné. “Static Analysis of Endian Portability by Abstract Interpretation”. SAS 2021 13

Meaningful ambiguities

Rounding choice can change comparisons
d + 1 month <= April 30 2024

I Rounding-sensitive comparison d = March 31 2024

When rounding up or down doesn’t change a computation
d + 1 month <= April 15 2024

I No rounding? Safe
I Otherwise, the rounding of d + 1 month will not change the comparison.

=⇒ Prove rounding-insensitivity of an expression e
I E↑JeK = E↓JeK encoded as sync(e)
I Considering product programs with both rounding modes
I Will reduce the need for costly legal interpretations

Delmas, Ouadjaout, and Miné. “Static Analysis of Endian Portability by Abstract Interpretation”. SAS 2021 13

YMD domain Fixed rounding mode

I Defines addition, accessors, projection, lexicographic comparison
I Translates constraints on dates into numerical constraints
date d1 ghost numerical variables d(d1),m(d1), y(d1)

I Acts as a functor lifting a numerical abstract domain

d(d1) ∈ [1, 31] ∧m(d1) ∈ [1, 12] ∧ y(d1) = 2024: all valid dates of 2024

14

YMD domain Fixed rounding mode

I Defines addition, accessors, projection, lexicographic comparison

I Translates constraints on dates into numerical constraints

date d1 ghost numerical variables d(d1),m(d1), y(d1)
I Acts as a functor lifting a numerical abstract domain

d(d1) ∈ [1, 31] ∧m(d1) ∈ [1, 12] ∧ y(d1) = 2024: all valid dates of 2024

14

YMD domain Fixed rounding mode

I Defines addition, accessors, projection, lexicographic comparison
I Translates constraints on dates into numerical constraints

date d1 ghost numerical variables d(d1),m(d1), y(d1)

I Acts as a functor lifting a numerical abstract domain

d(d1) ∈ [1, 31] ∧m(d1) ∈ [1, 12] ∧ y(d1) = 2024: all valid dates of 2024

14

YMD domain Fixed rounding mode

I Defines addition, accessors, projection, lexicographic comparison
I Translates constraints on dates into numerical constraints
date d1 ghost numerical variables d(d1),m(d1), y(d1)

I Acts as a functor lifting a numerical abstract domain

d(d1) ∈ [1, 31] ∧m(d1) ∈ [1, 12] ∧ y(d1) = 2024: all valid dates of 2024

14

YMD domain Fixed rounding mode

I Defines addition, accessors, projection, lexicographic comparison
I Translates constraints on dates into numerical constraints
date d1 ghost numerical variables d(d1),m(d1), y(d1)

I Acts as a functor lifting a numerical abstract domain

d(d1) ∈ [1, 31] ∧m(d1) ∈ [1, 12] ∧ y(d1) = 2024: all valid dates of 2024

14

YMD domain Fixed rounding mode

I Defines addition, accessors, projection, lexicographic comparison
I Translates constraints on dates into numerical constraints
date d1 ghost numerical variables d(d1),m(d1), y(d1)

I Acts as a functor lifting a numerical abstract domain

d(d1) ∈ [1, 31] ∧m(d1) ∈ [1, 12] ∧ y(d1) = 2024: all valid dates of 2024

14

YMD domain – month addition Fixed round mode

Transfer function computing (d,m,y) +# nb_m in abstract state abs

1 let add_months ((d, m, y): var^3) (nb_m: int) (abs: state) =
2

3

4

5

6

7

8

9

10

11

12

13

14

15

Partitioning used in practice.

Soundly derived from the ambiguous addition theorem.

15

YMD domain – month addition Fixed round mode

Transfer function computing (d,m,y) +# nb_m in abstract state abs

1 let add_months ((d, m, y): var^3) (nb_m: int) (abs: state) =
2 (* Define exprs corresponding to the resulting month, year *)
3 let r_m : expr = 1 + (m - 1 + nb_m) % 12 in
4 let r_y : expr = y + (m - 1 + nb_m) / 12 in
5

6

7

8

9

10

11

12

13

14

15

Partitioning used in practice.

Soundly derived from the ambiguous addition theorem.

15

YMD domain – month addition Fixed round mode

Transfer function computing (d,m,y) +# nb_m in abstract state abs

1 let add_months ((d, m, y): var^3) (nb_m: int) (abs: state) =
2 (* Define exprs corresponding to the resulting month, year *)
3 let r_m : expr = 1 + (m - 1 + nb_m) % 12 in
4 let r_y : expr = y + (m - 1 + nb_m) / 12 in
5 (* Abstract switch with four different (guard, continuation) *)
6 switch abs [
7 (* Case 1: round resulting date in 30-day month *)
8 d > 30 && is_one_of r_m [Apr;Jun;Sep;Nov], round 30 r_m r_y;
9

10

11

12

13

14

15]

Partitioning used in practice.

Soundly derived from the ambiguous addition theorem.

15

YMD domain – month addition Fixed round mode

Transfer function computing (d,m,y) +# nb_m in abstract state abs

1 let add_months ((d, m, y): var^3) (nb_m: int) (abs: state) =
2 (* Define exprs corresponding to the resulting month, year *)
3 let r_m : expr = 1 + (m - 1 + nb_m) % 12 in
4 let r_y : expr = y + (m - 1 + nb_m) / 12 in
5 (* Abstract switch with four different (guard, continuation) *)
6 switch abs [
7 (* Case 1: round resulting date in 30-day month *)
8 d > 30 && is_one_of r_m [Apr;Jun;Sep;Nov], round 30 r_m r_y;
9 (*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*) (*^^^^^^^^^^^^^^*)
10 (*********** guard condition *************) (* continuation *)
11

12

13

14

15]

Partitioning used in practice.

Soundly derived from the ambiguous addition theorem.

15

YMD domain – month addition Fixed round mode

Transfer function computing (d,m,y) +# nb_m in abstract state abs

1 let add_months ((d, m, y): var^3) (nb_m: int) (abs: state) =
2 (* Define exprs corresponding to the resulting month, year *)
3 let r_m : expr = 1 + (m - 1 + nb_m) % 12 in
4 let r_y : expr = y + (m - 1 + nb_m) / 12 in
5 (* Abstract switch with four different (guard, continuation) *)
6 switch abs [
7 (* Case 1: round resulting date in 30-day month *)
8 d > 30 && is_one_of r_m [Apr;Jun;Sep;Nov], round 30 r_m r_y;
9 (*^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*) (*^^^^^^^^^^^^^^*)
10 (*********** guard condition *************) (* continuation *)
11 (* ~> continuation (assume guard) *)
12

13

14

15]

Partitioning used in practice.

Soundly derived from the ambiguous addition theorem.

15

YMD domain – month addition Fixed round mode

Transfer function computing (d,m,y) +# nb_m in abstract state abs

1 let add_months ((d, m, y): var^3) (nb_m: int) (abs: state) =
2 (* Define exprs corresponding to the resulting month, year *)
3 let r_m : expr = 1 + (m - 1 + nb_m) % 12 in
4 let r_y : expr = y + (m - 1 + nb_m) / 12 in
5 (* Abstract switch with four different (guard, continuation) *)
6 switch abs [
7 (* Case 1: round resulting date in 30-day month *)
8 d > 30 && is_one_of r_m [Apr;Jun;Sep;Nov], round 30 r_m r_y;
9 (* Case 2: round resulting date to 28/02/Y, Y is not leap *)
10 d > 28 && r_m = Feb && not (is_leap r_y), round 28 r_m r_y;
11 (* Case 3: round resulting date to 29/02/Y, Y is leap *)
12 d > 29 && r_m = Feb && is_leap r_y, round 29 r_m r_y;
13

14

15]

Partitioning used in practice.

Soundly derived from the ambiguous addition theorem.

15

YMD domain – month addition Fixed round mode

Transfer function computing (d,m,y) +# nb_m in abstract state abs

1 let add_months ((d, m, y): var^3) (nb_m: int) (abs: state) =
2 (* Define exprs corresponding to the resulting month, year *)
3 let r_m : expr = 1 + (m - 1 + nb_m) % 12 in
4 let r_y : expr = y + (m - 1 + nb_m) / 12 in
5 (* Abstract switch with four different (guard, continuation) *)
6 switch abs [
7 (* Case 1: round resulting date in 30-day month *)
8 d > 30 && is_one_of r_m [Apr;Jun;Sep;Nov], round 30 r_m r_y;
9 (* Case 2: round resulting date to 28/02/Y, Y is not leap *)
10 d > 28 && r_m = Feb && not (is_leap r_y), round 28 r_m r_y;
11 (* Case 3: round resulting date to 29/02/Y, Y is leap *)
12 d > 29 && r_m = Feb && is_leap r_y, round 29 r_m r_y;
13 (* Case 4: no rounding *)
14 mk_true, mk_date d r_m r_y;
15]

Partitioning used in practice.

Soundly derived from the ambiguous addition theorem.

15

Choosing the right numerical abstract domains Fixed round mode

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete constraints on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!

4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }

︸ ︷︷ ︸
Bounded set of ints

, d(d2) = 30, m(d2) = m(d1) + 1, y(d2) = y(d1)

︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 1

16

Choosing the right numerical abstract domains Fixed round mode

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete constraints on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!

4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }

︸ ︷︷ ︸
Bounded set of ints

, d(d2) = 30, m(d2) = m(d1) + 1, y(d2) = y(d1)

︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 1

16

Choosing the right numerical abstract domains Fixed round mode

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete constraints on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!

4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }

︸ ︷︷ ︸
Bounded set of ints

, d(d2) = 30, m(d2) = m(d1) + 1, y(d2) = y(d1)

︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 1

16

Choosing the right numerical abstract domains Fixed round mode

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete constraints on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!

4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }

︸ ︷︷ ︸
Bounded set of ints

, d(d2) = 30, m(d2) = m(d1) + 1, y(d2) = y(d1)

︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 1

16

Choosing the right numerical abstract domains Fixed round mode

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete constraints on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!

4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }︸ ︷︷ ︸
Bounded set of ints

, d(d2) = 30, m(d2) = m(d1) + 1, y(d2) = y(d1)

︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 1

16

Choosing the right numerical abstract domains Fixed round mode

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete constraints on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!

4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }︸ ︷︷ ︸
Bounded set of ints

, d(d2) = 30, m(d2) = m(d1) + 1, y(d2) = y(d1)︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 1

16

Choosing the right numerical abstract domains Fixed round mode

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete constraints on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!

4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }︸ ︷︷ ︸
Bounded set of ints

, d(d2) = 30, m(d2) = m(d1) + 1, y(d2) = y(d1)︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1

︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 1

16

Choosing the right numerical abstract domains Fixed round mode

date d1 = rand_date(); date d2 = d1 + 1 month; rounding down.

I No concrete constraints on d1
I Intervals would be imprecise

=⇒ relational abstract domains needed!

4 cases apply, including:

I 30-day month

d(d1) = 31, m(d1) ∈ {Mar,May,Aug,Oct }︸ ︷︷ ︸
Bounded set of ints

, d(d2) = 30, m(d2) = m(d1) + 1, y(d2) = y(d1)︸ ︷︷ ︸
Polyhedra

I No rounding d(d1) = d(d2), m(d2) ≡12 m(d1) + 1︸ ︷︷ ︸
Linear congruence domain

, y(d1) ≤ y(d2) ≤ y(d1) + 1

16

Abstract double semantics

Moving to double programs

I Analyze the program in both rounding modes

I Shallow variable duplication depending on their rounding mode

date d1 = rand_date(); date d2 = d1 + 1 month; double semantics

I No rounding

d(d1) = d(d2) m(d2) ≡12 m(d1) + 1 y(d1) ≤ y(d2) ≤ y(d1) + 1

I 30-day month

d(d1) = 31,m(d1) ∈ {Mar,May,Aug,Sep }
↓d(d2) = 30, ↓m(d2) ∈ {Apr,Jun,Sep,Nov }, ↓m(d2) = m(d1) + 1
↑d(d2) = 1, ↑m(d2) ∈ {May,Jul,Oct,Dec }, ↑m(d2) = m(d1) + 2
↓y(d2) =↑y(d2) = y(d1)

17

Abstract double semantics

Moving to double programs

I Analyze the program in both rounding modes
I Shallow variable duplication depending on their rounding mode

date d1 = rand_date(); date d2 = d1 + 1 month; double semantics

I No rounding

d(d1) = d(d2) m(d2) ≡12 m(d1) + 1 y(d1) ≤ y(d2) ≤ y(d1) + 1

I 30-day month

d(d1) = 31,m(d1) ∈ {Mar,May,Aug,Sep }
↓d(d2) = 30, ↓m(d2) ∈ {Apr,Jun,Sep,Nov }, ↓m(d2) = m(d1) + 1
↑d(d2) = 1, ↑m(d2) ∈ {May,Jul,Oct,Dec }, ↑m(d2) = m(d1) + 2
↓y(d2) =↑y(d2) = y(d1)

17

Abstract double semantics

Moving to double programs

I Analyze the program in both rounding modes
I Shallow variable duplication depending on their rounding mode

date d1 = rand_date(); date d2 = d1 + 1 month; double semantics

I No rounding

d(d1) = d(d2) m(d2) ≡12 m(d1) + 1 y(d1) ≤ y(d2) ≤ y(d1) + 1

I 30-day month

d(d1) = 31,m(d1) ∈ {Mar,May,Aug,Sep }
↓d(d2) = 30, ↓m(d2) ∈ {Apr,Jun,Sep,Nov }, ↓m(d2) = m(d1) + 1
↑d(d2) = 1, ↑m(d2) ∈ {May,Jul,Oct,Dec }, ↑m(d2) = m(d1) + 2
↓y(d2) =↑y(d2) = y(d1)

17

Abstract double semantics

Moving to double programs

I Analyze the program in both rounding modes
I Shallow variable duplication depending on their rounding mode

date d1 = rand_date(); date d2 = d1 + 1 month; double semantics

I No rounding

d(d1) = d(d2) m(d2) ≡12 m(d1) + 1 y(d1) ≤ y(d2) ≤ y(d1) + 1

I 30-day month

d(d1) = 31,m(d1) ∈ {Mar,May,Aug,Sep }
↓d(d2) = 30, ↓m(d2) ∈ {Apr,Jun,Sep,Nov }, ↓m(d2) = m(d1) + 1
↑d(d2) = 1, ↑m(d2) ∈ {May,Jul,Oct,Dec }, ↑m(d2) = m(d1) + 2
↓y(d2) =↑y(d2) = y(d1)

17

Abstract double semantics

Moving to double programs

I Analyze the program in both rounding modes
I Shallow variable duplication depending on their rounding mode

date d1 = rand_date(); date d2 = d1 + 1 month; double semantics

I No rounding

d(d1) = d(d2) m(d2) ≡12 m(d1) + 1 y(d1) ≤ y(d2) ≤ y(d1) + 1

I 30-day month

d(d1) = 31,m(d1) ∈ {Mar,May,Aug,Sep }
↓d(d2) = 30, ↓m(d2) ∈ {Apr,Jun,Sep,Nov }, ↓m(d2) = m(d1) + 1
↑d(d2) = 1, ↑m(d2) ∈ {May,Jul,Oct,Dec }, ↑m(d2) = m(d1) + 2
↓y(d2) =↑y(d2) = y(d1) 17

Implementation into Mopsa

I Open-source static analysis platform

I C, Python, C+Python programs
I gitlab.com/mopsa/mopsa-analyzer
I Winner of SoftwareSystems@ SV-Comp’24

D.bidates # U.program # U.intraproc # U.ymd #

∧

∧ ∧

U.intervals U.bPowerset U.relPoly U.relGrid

Sequence

∧ Reduced product

Universal

Double programs

18

gitlab.com/mopsa/mopsa-analyzer

Implementation into Mopsa

I Open-source static analysis platform
I C, Python, C+Python programs

I gitlab.com/mopsa/mopsa-analyzer
I Winner of SoftwareSystems@ SV-Comp’24

D.bidates # U.program # U.intraproc # U.ymd #

∧

∧ ∧

U.intervals U.bPowerset U.relPoly U.relGrid

Sequence

∧ Reduced product

Universal

Double programs

18

gitlab.com/mopsa/mopsa-analyzer

Implementation into Mopsa

I Open-source static analysis platform
I C, Python, C+Python programs
I gitlab.com/mopsa/mopsa-analyzer

I Winner of SoftwareSystems@ SV-Comp’24

D.bidates # U.program # U.intraproc # U.ymd #

∧

∧ ∧

U.intervals U.bPowerset U.relPoly U.relGrid

Sequence

∧ Reduced product

Universal

Double programs

18

gitlab.com/mopsa/mopsa-analyzer

Implementation into Mopsa

I Open-source static analysis platform
I C, Python, C+Python programs
I gitlab.com/mopsa/mopsa-analyzer
I Winner of SoftwareSystems@ SV-Comp’24

D.bidates # U.program # U.intraproc # U.ymd #

∧

∧ ∧

U.intervals U.bPowerset U.relPoly U.relGrid

Sequence

∧ Reduced product

Universal

Double programs

18

gitlab.com/mopsa/mopsa-analyzer

Implementation into Mopsa

I Open-source static analysis platform
I C, Python, C+Python programs
I gitlab.com/mopsa/mopsa-analyzer
I Winner of SoftwareSystems@ SV-Comp’24

D.bidates # U.program # U.intraproc # U.ymd #

∧

∧ ∧

U.intervals U.bPowerset U.relPoly U.relGrid

Sequence

∧ Reduced product

Universal

Double programs

18

gitlab.com/mopsa/mopsa-analyzer

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y

19

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y

19

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y

19

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y

I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y

19

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2

I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y

19

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y

I limit is either 1 Feb. or 1 March of y

19

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < limit));
^^^^^^^^^^^^^^^

Desynchronization detected: (current < limit). Hints:
↑month(limit) = 3, ↑day(limit) = 1, ↓month(limit) = 2, ↓day(limit) = 1,
↑month(intermediate) = 3, ↑day(intermediate) = 1, ↓month(intermediate) = 2,
↓day(intermediate) = 28, month(birthday) = 2, day(birthday) = 29,
year(birthday) =[4] 0, month(current) = 2, day(current) = [1,29],
year(current) = ↑year(intermediate) = ↑year(limit)
= ↓year(intermediate) = ↓year(limit) = year(birthday) + 2

Computed, actual counter-example

I current is in Feb. of year y
I birthday is 29 Feb. of leap year y − 2
I intermediate is either 28 Feb. or 1 March of y
I limit is either 1 Feb. or 1 March of y

19

Case Study: French Housing Benefits

Catala, a DSL for computational laws
Article D823-20 of the French building regulations

The moving allowance is awarded to individuals or households with at least three children born
or to be born and who move into a new home entitled to one of the personal housing allowances
during a period between the first day of the calendar month following the third month of preg-
nancy for a child of rank three or more and the last day of the month preceding that in which
the child reaches his or her second birthday.
This allowance is payable if the right to assistance is acquired within six months of the date of
moving in.

```catala
scope MovingAllowanceEligibility:
definition condition_moving_period under condition
(match form.birthdate_third_child_or_more with pattern
-- MoreThan3Children of date_of_birth_or_pregnancy:
(match date_of_birth_or_pregnancy with pattern
-- DateOfBirth of birthday
current_date < (first_day_of_month of (birthday + 2 year))
# ...
)
)

consequence fulfilled
```

I Literate programming
I Lawyer-developer duos
I Default logic tailored to
the law

I Housing benefits:
20kLoC (incl. law)

Merigoux, Chataing, and Protzenko. “Catala: a programming language for the law”. 2021
Merigoux. “Experience report: implementing a real-world, medium-sized program derived from a

legislative specification”. 2023 20

Catala, a DSL for computational laws
Article D823-20 of the French building regulations

The moving allowance is awarded to individuals or households with at least three children born
or to be born and who move into a new home entitled to one of the personal housing allowances
during a period between the first day of the calendar month following the third month of preg-
nancy for a child of rank three or more and the last day of the month preceding that in which
the child reaches his or her second birthday.
This allowance is payable if the right to assistance is acquired within six months of the date of
moving in.

```catala
scope MovingAllowanceEligibility:
definition condition_moving_period under condition
(match form.birthdate_third_child_or_more with pattern
-- MoreThan3Children of date_of_birth_or_pregnancy:
(match date_of_birth_or_pregnancy with pattern
-- DateOfBirth of birthday
current_date < (first_day_of_month of (birthday + 2 year))
# ...
)
)

consequence fulfilled
```

I Literate programming
I Lawyer-developer duos
I Default logic tailored to
the law

I Housing benefits:
20kLoC (incl. law)

Merigoux, Chataing, and Protzenko. “Catala: a programming language for the law”. 2021
Merigoux. “Experience report: implementing a real-world, medium-sized program derived from a

legislative specification”. 2023 20

Case Study – Catala for the French Housing Benefits

Contributions to Catala

I Date-rounding library dates-calc

I Scope-level rounding mode configuration
I Connection with static analysis

21

Case Study – Catala for the French Housing Benefits

Contributions to Catala

I Date-rounding library dates-calc
I Scope-level rounding mode configuration

I Connection with static analysis

21

Case Study – Catala for the French Housing Benefits

Contributions to Catala

I Date-rounding library dates-calc
I Scope-level rounding mode configuration
I Connection with static analysis

21

Date ambiguity detection pipeline

file.catala Slicing
date-sensitive
computations

Prog. gen. progs.u Mopsa

Check-Circle

Exclamation-Triangle+ Hints

2 rounding-sensitive cases detected

No false alarms

Intra-scope extraction for now

Manual inter-scope extraction
16 additional cases:
I 10 can be proved safe
assuming current_date ≥ 2023

I Other are real issues

22

Date ambiguity detection pipeline

file.catala Slicing
date-sensitive
computations

Prog. gen. progs.u Mopsa

Check-Circle

Exclamation-Triangle+ Hints

2 rounding-sensitive cases detected

No false alarms

Intra-scope extraction for now

Manual inter-scope extraction
16 additional cases:
I 10 can be proved safe
assuming current_date ≥ 2023

I Other are real issues

22

Date ambiguity detection pipeline

file.catala Slicing
date-sensitive
computations

Prog. gen. progs.u Mopsa

Check-Circle

Exclamation-Triangle+ Hints

2 rounding-sensitive cases detected

No false alarms

Intra-scope extraction for now

Manual inter-scope extraction
16 additional cases:
I 10 can be proved safe
assuming current_date ≥ 2023

I Other are real issues

22

Date ambiguity detection pipeline

file.catala Slicing
date-sensitive
computations

Prog. gen. progs.u Mopsa

Check-Circle

Exclamation-Triangle+ Hints

2 rounding-sensitive cases detected

No false alarms

Intra-scope extraction for now

Manual inter-scope extraction
16 additional cases:
I 10 can be proved safe
assuming current_date ≥ 2023

I Other are real issues

22

Date ambiguity detection pipeline

file.catala Slicing
date-sensitive
computations

Prog. gen. progs.u Mopsa

Check-Circle

Exclamation-Triangle+ Hints

2 rounding-sensitive cases detected

No false alarms

Intra-scope extraction for now

Manual inter-scope extraction
16 additional cases:
I 10 can be proved safe
assuming current_date ≥ 2023

I Other are real issues

22

Conclusion

Related Work

Survey of implementations

I Java, boost round down
I Python stdlib: no month addition
I Inconsistency in spreadsheets

Floating-point arithmetic

I FP widely used & more complex!
I Different rounding modes
I No analysis of rounding-sensitivity?

Timezones, leap seconds & co.
Recent Rocq formalization: Ana, Bedmar, Rodrı́guez, Reyes, Buñuel, and Joosten.
“UTC Time, Formally Verified”. CPP 2024

23

Related Work

Survey of implementations

I Java, boost round down
I Python stdlib: no month addition
I Inconsistency in spreadsheets

Floating-point arithmetic

I FP widely used & more complex!
I Different rounding modes
I No analysis of rounding-sensitivity?

Timezones, leap seconds & co.
Recent Rocq formalization: Ana, Bedmar, Rodrı́guez, Reyes, Buñuel, and Joosten.
“UTC Time, Formally Verified”. CPP 2024

23

Related Work

Survey of implementations

I Java, boost round down
I Python stdlib: no month addition
I Inconsistency in spreadsheets

Floating-point arithmetic

I FP widely used & more complex!
I Different rounding modes
I No analysis of rounding-sensitivity?

Timezones, leap seconds & co.
Recent Rocq formalization: Ana, Bedmar, Rodrı́guez, Reyes, Buñuel, and Joosten.
“UTC Time, Formally Verified”. CPP 2024

23

Conclusion

I Formal semantics of date computations

I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Paper & artefact available! rmonat.fr/esop24/

“Automatic Verification of Catala programs” (AVoCat) project funded by Inria

24

rmonat.fr/esop24/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)

I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Paper & artefact available! rmonat.fr/esop24/

“Automatic Verification of Catala programs” (AVoCat) project funded by Inria

24

rmonat.fr/esop24/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Paper & artefact available! rmonat.fr/esop24/

“Automatic Verification of Catala programs” (AVoCat) project funded by Inria

24

rmonat.fr/esop24/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa

I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Paper & artefact available! rmonat.fr/esop24/

“Automatic Verification of Catala programs” (AVoCat) project funded by Inria

24

rmonat.fr/esop24/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits

I Comparison with mainstream implementations

Paper & artefact available! rmonat.fr/esop24/

“Automatic Verification of Catala programs” (AVoCat) project funded by Inria

24

rmonat.fr/esop24/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Paper & artefact available! rmonat.fr/esop24/

“Automatic Verification of Catala programs” (AVoCat) project funded by Inria

24

rmonat.fr/esop24/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Paper & artefact available! rmonat.fr/esop24/

“Automatic Verification of Catala programs” (AVoCat) project funded by Inria

24

rmonat.fr/esop24/

Conclusion

I Formal semantics of date computations
I OCaml library implementing our semantics (also in Python now!)
I Theorems verified in F?

I Ambiguity-detection static analysis using Mopsa
I Case study on Catala encoding of French housing benefits
I Comparison with mainstream implementations

Paper & artefact available! rmonat.fr/esop24/

“Automatic Verification of Catala programs” (AVoCat) project funded by Inria

24

rmonat.fr/esop24/

	Semantics
	Formalized Properties
	Rounding-insensitivity Static Analysis
	Case Study: French Housing Benefits
	Conclusion

