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Abstract

In this document, we use the Abstract Interpretation framework to analyze concurrent

programs using Thread-Modular Analysis. We designed a relational abstraction of interfer-

ences in order to infer more properties and go beyond the state of the art. We implemented

a basic analyzer, studying the numerical properties of a simple language. We present the

results obtained, as well as a study of the scalability of this approach.



1 Introduction

Simple software bugs can have dire consequences on critical systems. The crash of the Ariane V rocket1

is a well-documented and classical example of the consequences of an integer over�ow. More recently, the
same kind of integer over�ow was discovered on the Boeing 7872, and could have cut electrical power.

To discover these bugs, the most widely used technique is testing. The problem is that covering all
possible executions using testing is di�cult and costly. On the contrary, Static Analysis covers every
possible executions and �nds every bug. Program analysis is still a really di�cult problem as theoretical
results such as the undecidability of the halting problem prevent automation. This way, Static Analysis
can be used to guarantee that a software is bug-free.

There are di�erent theories in Static Analysis, including Abstract Interpretation and Model Checking.
We will here focus on Abstract Interpretation. It is a well-developped theory, and professional analyzers
of sequential programs such as Astrée have been successfully commercialized. However, the analysis
of concurrent programs is a much more di�cult task: programs can communicate implicitely through
a shared memory by their execution, and there are a lot of possible orders of execution resulting in a
combinatorial explosion, so that testing is not a real option anymore. This complexity also depends on
the memory model provided.

One of the methods to analyze concurrent programs, is to sequentialize the program and analyze
it as usual, though there is a combinatorial explosion in the number of cases. Another method is to
analyze each thread almost separately. It is called a Thread-Modular Analysis. Developping a relational
Thread-Modular Analysis is more di�cult than creating a relational analysis of a sequential program.
That is why the only analysis conducted before was range analysis, so that for each variable we only
knew about an interval it was guaranteed to be in. But for precision concerns, keeping linear relations
between variables is also interesting, though more costly. We developped an analysis that is capable of
keeping relations between variables, and then tested its precision and scalability.

Our contribution is the de�nition of a Thread-Modular Analysis using a concrete denotational seman-
tics, being then abstracted using relational numerical domains, and an implementation of a prototype
called Batman, before comparing it with Concurinterproc. Concurinterproc is another academic
prototype analyzing linear relations in concurrent programs which is not thread modular. We validated
experimentally the e�ciency of our approach: the experimental complexity of Batman depends on the
sum of the lengths of the threads, whereas other methods typically depends on the product of the lengths
of the threads. Our approach is still as precise as other methods.

In this document, we �rst introduce the reader to Abstract Interpretation, before presenting the state
of the research in the analysis of concurrent programs. We then de�ne the execution model we worked
on, before giving semantics of our program and of our analysis, and then abstracting it. We present the
prototype-analyzer I developped, Batman, and the results of our experiments.

This document is a report of the internship I did from June 1 to July 24, 2015, under the supervision
of Antoine Miné, in the ANTIQUE team, at the ENS Ulm. In this internship, I started by gathering
informatio on Abstract Interpretation, the state of the art of Thread-Modular Analysis, and Concurin-
terproc. We then decided to try a relational abstraction of the interferences, and we tried to formalize
it. Then I started to learn how to use Apron, which is a library handling numerical domains (such as
intervals, octagons and polyhedra). I implemented an analyzer prototype to test our new analysis and
compare it experimentally with Concurinterproc. I had to take some time in order to understand
some concepts and libraries, but my main approach was the one described above.

This internship was a part of my curriculum at the ENS Lyon3, in order to obtain a Licence (that
is, a diploma equivalent to a Bachelor) in Computer Science.

2 Introduction to Static Analysis by Abstract Interpretation

The goal of Abstract interpretation is to speed up computations, by using approximations. It was �rst
developed by Patrick Cousot and Radhia Cousot, and presented in [CC77]. Here, we will present the
case of static analysis.

1http://www.around.com/ariane.html
2In the discussion section of this document: http://www.gpo.gov/fdsys/pkg/FR-2015-05-01/pdf/2015-10066.pdf
3http://www.ens-lyon.fr/DI/?lang=en
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2.1 De�nitions

We will start by giving a de�nition of a lattice, a mathematical object that will be widely used in the
following sections.

Lattice (X,4,t,u) is a lattice, if:

� (X,4) is a partially ordered set

� ∀(a, b) ∈ X2, there is a least upper bound a t b (∈ X)

� ∀(a, b) ∈ X2, there is a greatest lower bound a u b (∈ X)

For example, (Z,≤,max,min) is a lattice.
(X,4,t,u,⊥,>) is a complete lattice if:

� (X,4) is a partially ordered set

� ∀S ⊆ X, there is a least upper bound tS (∈ X)

� ∀S ⊆ X, there is a gratest lower bound uS (∈ X)

� ⊥ = uX

� > = tX

The previous example is not a complete lattice (> 6∈ Z).

We will abbreviate �partially ordered set� into �poset�.

We also de�ne for a function f : A→ B, x ∈ A, y ∈ B the following notation:

∀u ∈ A, f [x 7→ y](u) =

{
f(u) if u 6= x

y if u = x

2.2 Galois connections

The goal of Abstract Interpretation is to use well-chosen approximations in order to accelerate compu-
tations, while keeping soundness properties. By soundness, we mean that if there is any error in the
program, we want our approximations to still �nd it. Conversely, if the analysis detects errors, these
might just be false alarms (and this is where things are approximated). One way to formalize these
approximations is to use Galois connections.

Galois connections Let (C,⊆) and (A,v) be two posets. We say that (α, γ) is a Galois connection,
if α : C → A and γ : A→ C respect the following property:

∀c ∈ C,∀a ∈ A,α(c) v a⇐⇒ c ⊆ γ(a)

We use the following notation: (C,⊆) −−−→←−−−α
γ

(A,v). We say that C is the concrete domain, and A is
the abstract domain. Similarly, γ is called a concretization (function), and α an abstraction.

Remark We only used posets in the de�nition, but usually lattices are used. It is common use to add
# to abstract domains.

Abstracting P(Z) We will now develop a common abstraction of sets of integers into intervals. With
this abstraction, we will be able to analyze programs to detect divisions by zero or over�ows. Let
I = {(a, b) | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b} ∪ ⊥. We now have to de�ne a lattice:

� (a, b) v (c, d)⇐⇒ c ≤ a ∧ b ≤ d

� (a, b) t (c, d) = (min(a, c),max(b, d))

� (a, b) t ⊥ = ⊥ t (a, b) = (a, b)
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� (a, b) u (c, d) =

{
(max(a, c),min(b, d)) if max(a, c) ≤ min(b, d)

⊥ otherwise

� (a, b) u ⊥ = ⊥ u (a, b) = ⊥

� > = (−∞,+∞)

Moreover, this lattice is complete.
We have the following Galois connection: (P(Z),⊆) −−−→←−−−α

γ
(I,v), where:

α(X) =

{
⊥ if X = ∅
(minX,maxX) otherwise

{
γ(⊥) = ∅
γ((a, b)) = {x ∈ Z | a ≤ x ≤ b}

Now we have a sound abstraction of P(Z), it would be convenient to develop sound abstractions
of functions, such as +. We will say that f# is a sound abstraction of f : P(Z) → P(Z), if: ∀d# ∈
I, f(γ(d#)) ⊆ γ(f#(d#)). This is equivalent to α(f(γ(d#))) v f#(d#). It really states that f# has to
be an over-approximation of f , so that we do not lose any case, even if the precision is reduced in some
cases. This way, we cover every possible execution, and we are able to detect every error.

For example, we can de�ne −# such that: (a, b) −# (c, d) = (a − d, b − c). We can notice that
−# is exact, ie f(γ(d#1 ), γ(d#2 )) = γ(f#(d#1 , d

#
2 )). On the contrary, ∪# = t is not exact, because

γ((0, 1) ∪# (3, 4)) = γ((0, 4)) = [0; 4], wheras γ((0, 1)) ∪ γ((3, 4)) = {0, 1, 3, 4}. Even if ∪# is not exact,
we still have that {0, 1, 3, 4} ⊆ [0; 4], which states that we have an over-approximation of ∪.

Point-wise lifting We just need to focus on the extension of the previously-mentionned abstraction
of P(Z) to an abstraction of V → P(Z). This last set can be seen as a memory domain, where we map
each variable a set of integers. We need to extend the operations explained above to V → I. This is
more a notation issue than a real problem, and there are no theoretical di�culties. We need to extend
our lattice on I in a �point-wise way�, where the points are the elements of V. We will add a dot over
the operations to emphasize the use of functions (here from V → I) rather than sets (I). Let f, g be in
V → I:

� f ⊆̇ g ⇐⇒ ∀V ∈ V, f(v) ⊆ g(v)

� f ṫ g = λV.f(v) t g(v)

� f u̇ g = λV.f(v) u g(v)

This extended structure is still a lattice and is called a Cartesian lattice. We can then extend the Galois
connection mentionned above into a Cartesian Galois connection:

(P(V → Z) ⊆) −−−→←−−−
α̇

γ̇
(V → I, ⊆̇)

α̇(X) = λV.α({ρ(V ) | ρ ∈ X})

γ̇(f) = {ρ | ∀V ∈ V, ρ(V ) ∈ γ(f(V ))}

2.3 Application to static analysis

An application of this interval abstraction is to be able to do a range analysis, by bounding each variable
at any point of a program. This can be useful, if we want to detect integer over�ows and division by
zero. We �rst de�ne a simple language, supporting only boolean and integers:
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A simple imperative language. Let V be the set of integer variables, k ∈ Z. We can now de�ne a
basic language:

〈arithmetical expression〉 ::= [k1; k2] | k | X | a1 † a2, † ∈ {+,−,×, /,%}

〈boolean expression〉 ::= b1 • b2 | not b1 | a1 � a2, • ∈ {∨,∧}, � ∈ {<, >,≤,≥,==, 6=}

〈commands〉 ::= c1 ; c2
| X = a
| if b then c1 else c2 endif
| while b do c done

Concrete denotational semantics. Now, we will de�ne a denotational semantics of this language,
to describe mathematically what every command of this language does. Denotational semantics uses
functions computing a modi�cation of the memory given another. There are other semantics, but we will
not talk about them here. For a detailed study, one can read [Cou02] (there is hierarchy of semantics
page 54).

This representation is interesting here because it is really similar to what one can implement in a real
analyzer.

We de�ne three operators: one to evaluate a given arithmetical or boolean expression using a mem-
ory domain, EJ.K, another FJ.K to �lter memory domains and keep only the ones satisfying a boolean
expression, and SJ.K, to compute the e�ects of commands on a set of memory domains.

EJarithmetical or boolean expressionK : (V → Z) −→ P(Z ∪ {true, false})
FJboolean expressionK : P(V → Z) −→ P(V → Z)

SJcommandsK : P(V → Z) −→ P(V → Z)

To compute the e�ect of an arithmetical expression such as a1 †a2, we have to recursively evaluate the
possible values of a1 and a2, and then evaluate all possible results. It is really similar for the evaluation
of boolean expressions.

EJkK(ρ) = {k}
EJ[k1; k2]K(ρ) = {x ∈ Z | k1 ≤ x ≤ k2}

EJXK(ρ) = {ρ(X)}
EJa1 † a2K(ρ) = {v1 † v2 | v1 ∈ EJa1K(ρ), v2 ∈ EJa2K(ρ), † ∈ {+,−,×} ∨ († ∈ {/,%} ∧ v2 6= 0)}
EJnot bK(ρ) = {¬v | v ∈ EJbK(ρ)}
EJb1 • b2K(ρ) = {v1 • v2 | v1 ∈ EJb1K(ρ), v2 ∈ EJb2K(ρ), • ∈ {∨,∧}}
EJa1 � a2K(ρ) = {v1 � v2 | v1 ∈ EJa1K(ρ), v2 ∈ EJa2K(ρ),� ∈ {<,>,≤,≥,==, 6=}}

The case of the assignment is simple, we just have to return the new set of memories and take into
account all the possible assignments. To compute the e�ect of a sequence of statements, we just need to
compose these statements.

SJX = aK(P ) = {ρ[X 7→ v] | ρ ∈ P, v ∈ EJaK(ρ)}
SJstat1 ; stat2K = SJstat2K ◦ SJstat1K

To express the semantics of the if and the while statements, we will need to �lter the memory domains
to apply modi�cations to the only domains satisfying the good condition. The case of the if statement is
quite simple: an analysis is conducted in each part of the statement, after having �ltered each part, and
the results are merged afterwards. The while statement just needs the computation of a loop invariant
via a �xpoint.
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FJbK(P ) = {ρ | ρ ∈ P, true ∈ EJbK(ρ)}
SJif b then t else fK(P ) =

let T = SJtK ◦ FJbKP in

let F = SJfK ◦ FJ¬bKP in

T ∪ F
SJwhile b do cK(P ) = FJ¬bK ◦ lfpλY.(P ∪ SJcK ◦ FJbKY )

Abstract denotational semantics. The abstract semantics is really similar to the concrete one,
with only small modi�cations: we �rst abstract P(V → Z) to V → P(Z), and then into V → I, using
the Galois connection presented in section 2.2. This way, we do not need to manipulates memory sets
anymore.

E#Jarithmetical or boolean expressionK : (V → I) −→ I

F#Jboolean expressionK : (V → I) −→ (V → I)

S#JcommandsK : (V → I) −→ (V → I)

E#JkK(ρ#) = (k, k)

E#J[k1; k2]K(ρ#) = (k1, k2)

E#JXK(ρ#) = ρ#(X)

E#Ja1 † a2K(ρ#) = E#Ja1K †# E#Ja2K

S#JX = aK(ρ#) = ρ#[X 7→ E#JeK]

S#Jstat1 ; stat2K = S#Jstat2K ◦ S#Jstat1K

The case of �ltering is a bit more di�cult. By transforming the cases, we only have to de�ne the
abstract condition �ltering for ∨, ∧ and ≤, as we can distribute the not in boolean expressions, or change
the comparison operator: we are using integers, so that x < y ⇔ x ≤ y − 1. To �lter a domain with
an expression such as X ≤ c, we will have to �cut� the assignment of X to respect the condition. For
example, if we know that a ≤ X ≤ b, we have two cases: if a > c, then there is no domain satisfying the
condition; if a ≤ c, and c < b, we have to cut the domain, so that a ≤ X ≤ c. Otherwise, we do not
have to change the interval. The general case is more complicated and presented in [Min04], section 2.4,
�Abstract Operators and Transfer Functions on D#�.

We suppose that ρ#(X) = (a, b). We now present the semantics of the if statement:

F#JX ≤ cK(ρ#) =

{
ρ#[X 7→ (a,min(b, c)) if a ≤ c
⊥̇ if a > c

F#Jb1 ∨ b2K(ρ#) = F#Jb1K(ρ#) ∪̇# F#Jb2K(ρ#)

F#Jb1 ∧ b2K(ρ#) = F#Jb1K(ρ#) ∩̇# F#Jb2K(ρ#)

S#Jif b then t else fKρ# =

let T = S#JtK ◦ F#JbKρ# in

let F = S#JfK ◦ F#J¬bKρ# in

T ∪̇#F

The case of loops. We left aside the case of loops, because we need to introduce a new concept called
widening before. The problem of the lfp operator presented in the concrete semantics is that it might
require in�nite calculations. We deal with this using a widening operator, less precise, but more e�cient.

We say that O : (I × I)→ I is a widening operator, if:

� ∀(x, y) ∈ I2, γ(x) ∪ γ(y) ⊆ γ(xOy)
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� for a sequence (xn) ∈ IN, the following sequence

{
y0 = x0

yn+1 = ynOxn+1

stabilizes in �nite time:

∃N ∈ N,∀n ≥ N, yn = yN

This de�nition can easily be extended to any abstract domain.
For example, iOj = (−∞,+∞) is a widening operator, although not an interesting one. To be more
precise while ensuring convergence, we can decide to change unstable bounds into in�nite ones, to obtain
the following widening: ∀((a, b), (c, d)) ∈ I2, ⊥O(a, b) = (a, b)O⊥ = (a, b) and:

(a, b)O(c, d) =

({
a if a ≤ c
−∞ if a > c

,

{
b if b ≥ d
+∞ if b < d

)
We can then de�ne the abstract semantics for the while loop, as the widening operator ensures the

convergence in �nite time of the limit below:

S#Jwhile b do cKρ# = F#J¬bK(limλY.Y Ȯ(ρ#∪̇# S#JcK ◦ F#JbKY ))

Increasing & decreasing iterations Consider the following program:

i = 0 ;
whi l e ( i < 10) do

i = i + 1 ;
done ;

Using the concrete semantics, we would �nd that i = 10 at the end of the program. Let's apply the
abstract semantics:

� y0(i) = (0, 0)

� y1(i) = y0(i)O(0, 1) = (0, 0)O(0, 1) = (0,+∞)

After the �ltering, we obtain only an over-approximation of the result, which is i ∈ [10; +∞], as
F#J¬(i < 10)K[i 7→ (0,+∞)] = [i 7→ (10,+∞)]. In some cases, we could re�ne this result using a
decreasing iteration: after the widening, we can continue iterating, but without the widening.

F#Ji < 10K(y1)∪̇#S#Ji = i+ 1K ◦ F#Ji < 10K(y1)

= [i 7→ (0, 9) ∪# (1, 10)]

= [i 7→ (0, 10)]

S#Jwhile (i < 10) do i = i+ 1; doneK

= F#J¬i < 10K[i 7→ (0, 10)]

= [i 7→ (10, 10)]

This way, we can gain some precision at an interesting cost. Sometimes, delaying the widening,
replacing with an abstract join for the �rst few iterations, can improve the precision. It is also possible
to unroll the loop, which means analyzing the �rst few iterations. This is not the same as delaying the
widening, because these iterations are not joined abstractly. Generally, both techniques are used.

Widening with thresholds In some cases, the decreasing iterations are not precise enough. For
example, we cannot infer that i = 10 at the end of the following program using what is described above:

i = 0 ;
whi l e ( t rue ) do

i f ( i < 10) then
i = i + 1 ;

end i f ;
done ;
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The reason why it fails is a bit too complex to explain it in this report. This phenomenon is explained
in [HH12].

We can de�ne the widening with thresholds on T , where T is a �nite set of integers, containing also
+∞ and −∞:

∀((a, b), (c, d)) ∈ I2, (a, b)O(c, d) =

({
a if a ≤ c
max{t ∈ T | t ≤ c} if a > c

,

{
b if b ≥ d
min{t ∈ T | t ≥ d}

)

If T = {−∞, 10,+∞}, we can infer that i = 10. If T = {−∞, a,+∞}, with a ≥ 10, we will only �nd
that i ∈ [10; a].

Soundness of the abstraction To prove the soundness of this abstraction, we have to prove that
SJstatK(γ̇(i)) ⊆ γ̇(S#JstatK(i)). This can be done by induction on the program commands.

Detecting errors We have not presented how to catch errors such as division by zero using the
analysis presented above. Let Ω be the set of possible errors. We can extend S#J.K, F#J.K to P(V →
Z)×P(Ω) −→ P(V → Z)×P(Ω) and E#J.K to (V → Z) −→ P(Z ∪ {true, false})×P(Ω). This way, we
can detect errors during the evaluation of arithmetical expressions (for example, a division by zero), and
propagate them throughout the analysis, so that the semantics S#J.K outputs the set of possible errors
encountered during the execution of the program.

2.4 Relational domains

Relational domains are able to keep relations beetween variables (usually, linear relations).

The need for relational domains.

assume 0 <= x <= 10 ;
assume 0 <= y <= 10 ;

i f ( x > y) then
z = x ;

e l s e
z = y ;

a s s e r t ( z − y ) >= 0 ;

Using an interval analysis, we would get that z, x, y ∈ [0; 10] so that z − y ∈ [−10; 10]. But z ≥ y
holds during the whole program. It might be interesting to have domains that are able to store that kind
of relation. We will call them relational domains.

Polyhedra. We will present an example using the polyhedra domain, introduced by Patrick Cousot
and Nicolas Halbwachs, in [CH78]. The numerical domain called polyhedra is represented by convex
polyhedra, that might be unbounded. However, operations on polyhedra can be costly to compute, with
some operations having an exponential complexity in practice (in the number of variables). We will
present how this relational domain works. Consider the following code:

1 assume 0 <= x <= 10 ;
2 assume 0 <= y <= 10 ;
3 i f ( x > y) then
4 y = x ;
5 end i f

At the end of line 2, the domain is the square represented in �gure 1a. During the analysis of the if
statement, the domain is separated into one corresponding to the assignement x = y if x > y (the dark
thick line), and the other corresponding to the empty else (the blue triangle). We then join the domains
to obtain the �gure 1b. This way, we know that the variables at the end of the program are contained
in the blue triangle, that is we have: x ≥ 0, y ≤ 10, x ≤ y.
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(b) At the end of line 5

Figure 1: Polyhedra corresponding to the example above

Figure 2: Best abstractions of a circle using boxes and octagons.
There is not best abstraction of a circle in the polyhedra domain

We assume we have some built-in assign function, to assign an arithmetic expression to a variable
over a domain, and functions called add, rename and delete to be able to manage variables over a domain.
We do not delve into the details; the reader can consult [CH78] for more informations.

The polyhedra domain has only a concretization function γ, but no best abstraction α: it is not
possible to have a best abstraction of a circle (cf �gure 2: even if we use only regular polygons, we can
always increase the number of sides to improve the abstraction of the circle). Having only a concretization
function but no Galois connection leads to a slightly weaker version of abstract interpretation (developped
in [CC92]), but it is not a problem in practice. In particular, it does not a�ect the soundness of the
analysis, which is of paramount importance.

Weakly-relational domains. Some weakly-relational domains exist. The relationships we are able
to infer are a subset of general linear constraints, but the time and space complexities are usually better.
For example, octagons ([Min06]) can infer properties ±X ±Y ≤ c, where X and Y are variables and c is
a constant. It has a worst case complexity of O(n3), where n is the number of variables ([Min04], page
152).

2.5 The Apron library

Apron is a library handling di�erent numerical domains, among which octagons and polyhedra. It
provides a global interface so that the use of a numerical domain is independant from the one chosen. It
is written in C, and released under an LGPL license. Ocaml bindings are available.

This library is presented in [JM09]. It is available online4 and it can also be installed via opam, the
Ocaml Package Manager.

4http://apron.cri.ensmp.fr/library/
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A fork of the Apron library is called Bddapron ([Jea]). It handles, in addition to numerical domains,
�nite sets using Binary Decision Diagrams.

3 Related work

A lot of related work has already been presented in the last section. We refer the reader to [Rin01]
for a survey of the analysing concurrent programs. We present Thread-Modular Analysis, on which
our approach is based, and Concurinterproc, another analyzer of concurrent programs providing a
relational static analysis.

3.1 Thread-Modular Analysis

The concept of Thread-Modular Analysis within Abstract Interpretation is formalized in [CH09], [Min12],
[Min13b], [Min14]. The idea of Thread-Modular Analysis is to analyze each thread almost separately, by
just taking into account �interferences�: a change of a global variable value created by another thread.
Then, the interferences created by each thread are computed. The last two steps are iterated until
a �xpoint is reached (ie, the computed domains and interferences are stable by the iteration). This
approach highly depends on the hypothesis on the execution model.

This Thread-Modular Analysis is based on Jone's Rely-Guarantee reasoning presented in [Jon81].
This reasoning is itself based on Hoare logic. Hoare triples are replaced by: R,G ` {P} state {Q}. This
intuitively means that if the property P is valid on the program states, before stat is executed, and that
the actions of other threads are described in R, then Q is true after the execution of stat, and the e�ects
of stat on the other threads are included in G. This proof method provides rules to abide by, but no
automatic computation. Still, fundamental ideas are presented in [Jon81], and developped in [Min12],
[Min13b], [Min14].

[Min14] extends [Min12] and [Min13b], by describing new abstractions providing a level of relation-
ality. We will present here a Thread-Modular Static Analysis by Abstract Interpretation, but we will
expose a di�erent approach enabling strong relationality in the analysis.

We will present an example of Thread-Modular Analysis in section 4.2, once the execution model is
de�ned.

3.2 Concurinterproc

Concurinterproc is an academic analyzer of concurrent programs designed by Bertrand Jeannet
([Jea13]). It provides a relational static analysis, which is not thread-modular. Concurinterproc is
able to analyze procedures, and do a combination of forward and backward analysis. It uses a sort of
interleaving semantics to model the preemption of threads. It is freely available online, and has a web
interface.

4 Theoretical framework

4.1 Going parallel

In this internship, I used a model presented in [Min12], [Min13b], [Min14].
We assume we have a �xed number of threads, using only global variables, and that the threads only

communicate through shared memory. There are no dynamic creation of threads: they are statically
created at the initialization. The really important hypothesis here is that we suppose that the execution
of assignments and the evaluation of boolean expressions are atomic: we use a sequentially consistent
memory model.

For example, if we consider the following threads:

i f not ( x == 0) then
y = y / x ;

x = 0 ;

This can be executed in three di�erent ways:

9



x = 0;

if not (x == 0) then

y = y / x;

if not (x == 0) then

x = 0;

y = y / x;

if not (x == 0) then

y = y / x;

x = 0;

We can see that depending on the order of execution, the second thread might �interfere� with the
�rst thread, and create a division by zero error. We can notice that interferences are only created by
assignments of variables.

4.2 An example of Thread-Modular Analysis

We will describe the Thread-Modular Analysis on the example below. Basically, thread t1 and t2
alternate their executions and actively wait for flag to have the good value to (re)start their executions.

var f l a g : i n t ;
i n i t i a l f l a g == 1 ;

1 thread t1 :
2 begin
3 whi le t rue do
4 whi le not ( f l a g == 1) do done ;
5 f l a g = 2 ;
6 done ;
7 end

1 thread t2 :
2 begin
3 whi le t rue do
4 whi le not ( f l a g == 2) do done ;
5 f l a g = 1 ;
6 done ;
7 end

We will only study the interferences and not the domains at the end, which are both ⊥ as the threads
do not stop.

At the �rst iteration: we have the following interference created by thread t1 (and corresponding to
assignment at line 5): flag : 1  2. Thread t2 does not create any interference, because it is waiting
busily at line 4 (at the beginning, flag = 1 and we do not know � yet � that this can change in t1).

At the second iteration: the interferences created by thread t1 do not change, but now we can apply
t1's interference to t2, and pass the busy waiting at line 4. This way we have a new interference for t2
flag : 2 1

At the third iteration: we do not detect new interferences: a �xpoint is reached, and thus our
analysis is �nished.

To represent flag : 1  2 in numerical domains, we will represent transitions as couples (here,
(1; 2)). We then have to use two variables: we will use one non-primed, initial variable, and one primed,
�nal variable. Thus, we adopt the following notation: (flag; flag′) = (1; 2) to state that we have an
interference on the variable flag, and that the value can change from 1 to 2. This primed-based notation
is standard in static analysis: for example, it is used in [ACI10].

5 Denotational semantics

We will now formalize the interferences, and the Thread-Modular Analysis, using denotational semantics,
and then abstract this semantics.

5.1 Concrete semantics

Let T be the set of threads, L be the set of program points and V be the set of variables. We de�ne
control points as C = T → L: this way, we assign a current location to each thread. Environments are
de�ned as E = V → Z, and the memory M as C × E . We denote the interferences as I ⊆ T ×M2: a
transition of states created by a certain thread. We present a concrete semantics with interferences, and
explain it below.

10



SJstatKt,BJboolean expressionKt : P(M)× P(I)→ P(M)× P(I) (1)

SJl1X ← el2Kt(R, I) = (2)

let I1 = {t, (c, ρ), (c[t 7→ l2], ρ[x 7→ v]) | (c, ρ) ∈ R, v ∈ EJeKtρ} in
let R1 = {(c′, ρ′) | ∃(c, ρ), (t, (c, ρ), (c, ρ′)) ∈ I1} in
let R2 = lfpλS. R1 ∪ {(c′, ρ′) | ∃t′ ∈ T \ {t}, (c, ρ) ∈ S, (t′, (c, ρ), (c′, ρ′)) ∈ I} in

R2, I ∪ I1
BJbKt(R, I) = (3)

let R1 = {(c, ρ) ∈ R ⊆ C × E | true ∈ EJbKtρ} in
let R2 = lfpλS. R1 ∪ {(c′, ρ′) | ∃t′ ∈ T \ {t}, (c, ρ) ∈ S, (t′, (c, ρ), (c′, ρ′)) ∈ I} in

R2, I

In (1), we express the fact that SJ.Kt needs a statement stat of a thread t, a global memory map, and
a set of interferences, in order to compute a resulting memory domain and a new set of interferences.
Similarly, we can �lter a domain with a boolean expression using BJ.Kt, though in this case, interferences
are unchanged.

In (2), I1 are the interferences created by the new assignment X ← e: it is just a transition from
the state before the assignment to the state after the assignment. R1 is the memory domain before
any interference is applied (we only apply the assignment). R2 is the memory domain after all possible
combination of interferences had been taken into account. It can be seen as the smallest set stable by
the application of any interference in I, and thus as the least �xed point of a function.

(3) is quite similar: we �rst �lter the memory domain to keep environments where b is veri�ed, and
we then compute the interferences that can be created by the other threads.

On the contrary to (2) and (3), the following rules are similar to the usual denotational semantics for
sequantial programs.

SJstat1 ; stat2Kt = SJstat2Kt ◦ SJstat1Kt (4)

SJif b then t else fKtX = (5)

let T = SJtKt ◦ BJbKtX in

let F = SJfKt ◦ BJ¬bKtX in

T ∪ F
SJwhile b do cKtX = BJ¬bKt ◦ lfpλY.(X ∪ SJcKt ◦ BJbKtY ) (6)

Let statst be the statements of thread t, and M a memory containing initialization of variables. Doing
a Thread-Modular Analysis is equivalent to computing lfp f , with:

f :


(T → P(M))× (T → P(I)) −→ (T → P(M))× (T → P(I))

R, I 7−→ t 7→ R′
t, t 7→ I ′t

where R′
t, I

′
t = SJstatstKt(M ,

⋃
t′∈T \{t} I(t′))

It is necessary to compute a �xpoint of f , and not only the �rst iterations: at the beginning, some
interferences are not yet discovered, and thus the analysis is not yet sound. When the set of interferences
is stable, then the analysis is sound.

This semantics is sound (all execution cases are taken into account) and complete (any property of
the program can be proved using this semantics). It is however too precise to be computed: we will �rst
abstract this semantics in the next sections.

5.2 Abstractions

We use the following abstractions:

αR,t :

{
P(M) −→ L → P(E)
X 7−→ λL.{e | (c, e) ∈ X ∧ c(t) = L}
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αI :

{
P(I) −→ T → P(E2)
X 7−→ λt.{(b, e) ∈ E2 | ∃(cb, ce) ∈ C2, (t, (cb, b), (ce, e)) ∈ X}

Their purpose is to forget the control points of the other threads, in order to reduce the cost of
computation in the coming abstract semantics. It also permits to reduce the cost of representation of
interferences. Using αR,t, we keep the control points of the current thread in order to be locally �ow-
sensitive � that is the analysis is sensitive to the order of execution on the current thread t. In αI , we
associate to each thread the set of interferences it created.

We suppose we have a concretization γE of a numerical domain into the memory domain, and another
concretization γIT F of a relational numerical domain into interferences.

γE : (L → D#) −→ (L → P(E))

γIT F : (T → I#) −→ (T → P(E2))

P(E2) can represent a relation: instead of storing one value for one variable, we store a couple of
values for a variable and its primed sibling. We thus have an initial element and a �nal element, and
they de�ne a transition. This was mentionned in section 4.2. A more relational-oriented example is the
following: if we want to say that an interference can only increase a variable x, we could write this as
x′ ≥ x.

In this internship, I mainly worked on the polyhedra abstract domain, but we have seen previously
that other domains such as octagons exist.

5.3 Abstract semantics

We suppose we have some built-in operations, such as assigning a set of expressions to a set of variables,
adding uninitialized variables to a domain, renaming and deleting a variable in a domain. We also
suppose the we have a join (ie an abstraction of the union), as well as intersection and widening operators.
These are really standard operations, implemented in both Apron and Bddapron. Let A be the set of
arithmetical expressions. Here are the signatures of the previously mentionned functions:

assign : D# × P(V ×A)→ D#

add : D# × P(V)→ D#

rename : D# × P(V2)→ D#

delete : D# × P(V)→ D#

We would like a general method to apply interferences to a domain. Let us start with an example
before formalizing the functions: suppose we have a memory domain R = 0 ≤ x ≤ 10,−10 ≤ y ≤ 10,
and interferences like I = 0 ≤ x ≤ 12, x′ = x+ 1, y′ = y created by thread r. This means that we know
an interference that changes x in x + 1, if 0 ≤ x ≤ 12, but that this interference does not modify y.
We here give an example over the abstract domain. It corresponds to �nding the following concrete set:
{(c′, ρ′) | ∃t ∈ T \ {r},∃(c, ρ) ∈ R, (t, (c, ρ), (c′, ρ′)) ∈ I}

1. We need to add variables to the memory domain, so it has the same dimension as the interferences.
So we need to add the variables x′, y′ to the intial domain, but we do not initialize them: we just
want to gain dimensions, but without imposing any conditions on these new dimensions � for now.

2. Then, we can apply the interferences by intersecting the modi�ed memory domain and the in-
terferences. We get that 0 ≤ x ≤ 10,−10 ≤ y ≤ 10, x′ = x + 1, y′ = y. In the concrete
world, this means that if we have a memory domain R and an interference I, we are searching for
{(c, ρ), (c′, ρ′) | ∃t ∈ T \ {r},∃(c, ρ) ∈ R, (t, (c, ρ), (c′, ρ′)) ∈ I}

3. We �nally need to get the result: we should remove the variables x and y, and rename x' into x
and y' into y. We obtain 1 ≤ x ≤ 11,−10 ≤ y ≤ 10.

We can see that we get a sound abstraction of the concrete formula proposed above.

On top of the previously mentionned functions, we implement new functions called extend, img and
apply. We introduce some notations: D#

n is the set of domains on D# with n variables, ∆#
2n ⊆ D

#
2n must
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satisfy the following property: ∃X ⊆ Vars(∆#
2n),∀x ∈ X, |X| = n ∧ x′ ∈ Vars(∆#

2n). This last set will
be useful to denote an environment where each variable has a copy of itself. Var : D# → P(V) associates
to each domain its variables. We suppose that n = |V|.

extend :

{
D#
n −→ ∆#

2n

R# 7−→ add(R#, {x′ | x ∈ Vars(R#)})

img :


∆#

2n −→ D#
n

R# 7−→ let X = {x ∈ Vars(R#) | x′ ∈ Vars(R#)} in
let R#

1 = delete(R#, {x | x ∈ X}) in
rename(R#

2 , {(x′, x) | x ∈ X})

apply :


D#
n × I# −→ D#

n

R#, I# 7−→ let R#
1 = extend(R#) in

let R#
2 = R#

1 ∩# I# in
img(R#

2 )

The function extend creates a copy of every variable of the domain, whereas img returns the image
set of a relation. With these two functions, we can now give a procedure computing the result of an
interference, giving an initial memory domain: we �rst have to add copies of the variables of the memory
domain (as in the �rst part in the example above). We can then intersect the resulting memory domain
R#

1 with the interferences (second part of the example above). We then have to get the image of the
relation, which is the part where the variables have quotes (third part of the example above). This is
achieved with the function img.

The obtained abstract semantics has the following signature:

S#JstatKt : (L → D#)× (T → I#) −→ (L → D#)× (T → I#)

We now abstract the concrete semantics (2), (3):

S#Jl1X ← el2Kt(R#, I#) =

let I#g =
⋃#

t′∈T \{t}

{I#(t′)} in

let I#l = extend(R#(l1)) in

let I#l = assign(I#l , {(X
′, e)} ∪ {(Y, Y ′) | Y ∈ V ar(R#) \ {X}}) in

let R#
1 = img(I#l ) in

let R#
2 = limλY #. Y #O(R#

1 ∪# apply(Y #, I#g )) in

R#[l2 7→ R#
2 ], I#[t 7→ I#(t) ∪# I#l ]

B#Jl1bl2Kt(R#, I#) =

let I#g =
⋃#

t′∈T \{t}

{I#(t′)} in

let R#
1 = F#JbK(R#(l1)) in

let R#
2 = limλY #. Y #O(R#

1 ∪# apply(Y #, I#g )) in

R#[l2 7→ R#
2 ], I#

We changed the lfp operator for a limit and a widening operator. This way, convergence is ensured
by the de�nition of the widening operator.
This abstraction of the other parts of the semantics is similar to what was presented in section 2.3.

S#Jif b then t else fKt(R#, I#) =

let T = S#JtKt ◦ B#JbKt(R#, I#) in

let F = S#JfKt ◦ B#J¬bKt(R#, I#) in

T ∪̇#F

S#Jwhile b do cKt(R#, I#) = B#J¬bKt(limλY.Y Ȯ(R#∪̇# S#JcKt ◦ B#JbKt(Y, I#))
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6 Implementation of a BAsic Thread-Modular ANalyzer

I also implemented an analyzer prototype, called Batman, in order to assess the precision and scalability
of the analysis presented above. It has roughly 1700 lines of OCaml code at the time of writing. It uses the
Ocaml bindings of the Apron ([JM09]) or the Bddapron ([Jea]) library to manipulate abstract domains.
I implemented a simple widening with thresholds, as well as increasing and decreasing iterations. I am
very grateful to Antoine Miné, who made the source code of a prototype analyzer presented in [Min13a]
available. It has been really helpful to have an example of an analyzer using Apron. The analyzer uses
functors, so that changing from one relational domain to another is really simple.

In order to compare the performances of Concurinterproc and Batman, I used a similar type
of input. The basic language I de�ned supports integer and boolean variables, if and while statements,
assignments. It does not supports procedures, on the contrary to Concurinterproc

This program is available at: http://rmonat.fr/batman.html. It is released under the GPLv3
license.

7 Results

We will �rst present some detailed examples, and then study the scalability of this approach.

7.1 Some examples

In this section, I will show some detailed examples.

Clock example. This example was mentionned in [Min14]: using a combination of abstractions that
were able to express whether a variable is monotonic, the author was able to analyze the following
program. However, the abstractions were very specialized, and [Min14] has to resort to a complicated
trace semantics (compared with the state-based semantics we use here). The technique we proposed
express simply the monotonicity with x′ ≥ x, with general and more robust domains.

var z : int , h : int , c : int , t : int , l : int , r : i n t ;
i n i t i a l z == 0 and h == 0 and c == 0 and t == 0 and l == 0 ;

thread t1 :
begin
whi l e ( z < 1000) do
z = z + 1 ;
i f (h < 100) then
h = h + 1 ;
end i f ;

done ;
end

thread t2 :
begin
whi l e ( z < 1000) do
z = z + 1 ;
c = h ;

done ;
end

thread t3 :
begin
whi l e ( z < 1000) do
i f ( [ 0 , 1 ] == 0) then
t = 0 ;

e l s e
t = t + c − l ;

e nd i f ;
l = c ;

done ;
end

Using Batman, we can �nd that 0 ≤ t ≤ l ≤ c ≤ h ≤ 100, z ≥ 1000. This illustrates the fact that
we can �nd hidden relations. We can see that l ≤ c in the assignment corresponding in thread t3, and
c ≤ h in thread t2, and h < 100 in thread t1. We can then �nd that 0 ≤ t ≤ l. Concurinterproc
does almost the same relations, except that h < 100 is replaced by h ≤ z (but this might be only a
bene�t from the widening with threshold implemented in Batman). However, Concurinterproc uses
0.746s to analyze this program, whereas Batman uses 0.426s. This di�erence may be due to the use of
Bddapron instead of Apron, but we will see in the scalability section that Batman is usually faster than
Concurinterproc.

Flow-insensitivity. We have seen that our abstractions removed the �ow-sensitivity of the interfer-
ences. This kind of analysis, as mentionned in [Min14], does not analyze the following program properly:

x = x + 1 ; x = x + 1 ;
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We can only infer that interferences are of the form x′ = x+ 1, but we do not have any bound, because
they are unstable by the application of the analysis (we would �rst have x′ = x + 1, x = 0, but then
x′ = x + 1, 0 ≤ x ≤ 1, and so on until the widening breaks the unstable bound). Thus, Batman can
only infer that x ≥ 1, whereas Concurinterproc �nds that x = 2 at the end.

Mutual exclusion algorithms. At the time of writing, mutual exclusion algorithm cannot be proved
by Batman, mainly because of the �ow-insensitivity illustrated above. We tried to support boolean
variables using Bddapron. Bddapron is able to partition numerical domains with respect to the values
of boolean variables. Sadly, this was not su�cient: too much interferences where considered appliable in
the analysis. We were not able to infer any information on turn; on b1 in T0 and on b0 in T1. This code
has been taken from Concurinterproc's examples, and is an implementation of Peterson's mutual
exclusion algorithm. Improvements to tackle this issue are discussed in section 8.

var b0 : bool , b1 : bool , turn : bool ;
i n i t i a l not b0 and not b1 ;

1 thread T0 :
2 begin
3 whi le t rue do
4 b0 = true ;
5 turn = f a l s e ;
6 assume (b1==f a l s e or turn==true ) ;
7 b0 = f a l s e ;
8 done ;
9 end

1 thread T1 :
2 begin
3 whi le t rue do
4 b1 = true ;
5 turn = true ;
6 assume (b0==f a l s e or turn==f a l s e ) ;
7 b1 = f a l s e ;
8 done ;
9 end

A kind of synchronization algorithm. However, some kind of synchronization algorithm are cor-
rectly analyzed (even with Apron):

var f l a g : int , x : i n t ;
i n i t i a l f l a g == 1 and x == 1 ;

1 thread t1 :
2 begin
3 whi le ( t rue ) do
4 whi le not ( f l a g == 1) do done ;
5 x = 1 ;
6 f l a g = 2 ;
7 done ;
8 end

1 thread t2 :
2 begin
3 whi le ( t rue ) do
4 whi le not ( f l a g == 2) do done ;
5 x = 2 ;
6 f l a g = 1 ;
7 done ;
8 end

In this program really similar to what was presented in section 4.2, threads t1 and t2 alternate their
executions. In addition, we can infer that line 5 contains a mutual exclusion, so that we are sure that
x = 1 in t1, and x = 2 in t2. One of the interferences created by t2 is flag′ + x = 3. We can deduce
from this that if x = 1 then flag′ = 2 and if x = 2 then flag′ = 1.

7.2 Scalability

We will discuss scalability of this analysis in terms of number of variables and number of threads. I built
some Python scripts to automatize the benchmarks presented in �gure 3.

Scalability in the number of variables. The Batman analyzer does not scale in the number of
variables. This is not really surprising because the polyhedra domain is used, and analyzers of sequential
programs using the polyhedra domain do not scale in the number of variables too. As Batman uses
Apron, it is really easy to switch to another domain � such as octagons. To test the octagons domain, and
compare it with polyhedra, I focused on one program. On this example, the conclusion is that octagons
scale much better than polyhedra: octagons look like they have a cubic complexity in the number of
variables, whereas polyhedra have an exponential complexity. Other methods such as variable packing
presented in [Min06] could also be used to improve scalability in this domain.
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The graph in �gure 3a has been generated by copying a simple program model, but by changing the
variables name in each thread, so that we have n instances of a same program running in parallel but not
interfering. The y-axis has a log scale. Even without any interference between any threads, this shows
that the current tools do not scale well in the number of variables.

Scalability in the number of threads. We tested the scalability in the number of threads, mostly
by copying a program composed of one or two threads and changing one parameter (such as a bound).
We �rst used a model based on the following program, presented in [Min13b] and [Min14]:

var x : int , y : int , z : i n t ;
i n i t i a l x == 0 and y == 0 and z == 0 ;

1 thread t1 :
2 begin
3 whi le ( z < 10000) do
4 z = z + 1 ;
5 i f ( y < 10) then
6 y = y + 1 ;
7 end i f ;
8 done ;
9 end

1 thread t2 :
2 begin
3 whi le ( z < 10000) do
4 z = z + 1 ;
5 i f ( x <= y) then
6 x = x + 1 ;
7 end i f ;
8 done ;
9 end

The y < 10 was replaced by y < c where c is a random value between 10 and 100. One thing di�cult
to infer, and mentionned in [Min14], is that x+ 1 ≤ y. This is true, because at the beginning, x = y and
then x is incremented if and only if x ≤ y (and the only possible interference increments y). Moreover,
this is correctly inferred by Batman. The results are displayed in �gure 3b. The y-axis has a log scale.

We present another result in �gure 3c, by considering multiple copies of the �alternating threads�
presented in section 7.1. We changed the transition to a nondeterministic one: line 6 has been replaced
by flag = [1,m], meaning that the value is chosen at random between 1 and m. Here m is the total
number of threads. We can see that on this example, Batman scales pretty well, though it appears it
has a quadratic complexity in the number of threads. This is due to the following point: in our thread-
modular analysis, we analyze each one of the m threads, and in each thread we should take into account
m − 1 interferences. We do not show Concurinterproc's results here, as it did not scale as well as
Batman (for example, it was already above 20 minutes of computation with 50 threads).

We should highlight that this experimental quadratic complexity in the number of threads is a real
improvement over the theoretical cost. An analysis using explicitely the product of control spaces would
have a complexity exponential in the number of threads: let c be the average number of control points
of a thread, and t be the number of threads. The product of control spaces has a size ct, and thus the
explicit analysis has a complexity that is exponential in the number of threads.

Memory use. We did not measure precisely the memory usage, but we still noticed a big di�erence
between Batman and Concurinterproc. In the tests corresponding to �gure 3b, Concurinterproc
used 15GB of RAM when processing 6 threads, whereas Batman used less than 500MB during these
tests. On longer tests (as in 3c), the memory use has never been a bottleneck in Batman: it was using
less than 500MB, and the memory usage looked roughly linear in the number of threads.
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(a) Scalability in the number of variables

(b) Scalability in the number of threads

(c) Scalability in the number of threads � �alternating threads�

Figure 3
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8 Conclusion

We have developped a relational abstraction of interferences, that permits us to analyze more precisely
programs. This approach is based on Abstract Interpretation and Thread-Modular Analysis, and has
been validated by developping and testing an analyzer called Batman. This approach promises to be
scalable in the number of threads, on the contrary to other methods.
There are many other things to explore, among which:

� weaker memory models: we have assumed a sequentially consistent model of execution, but com-
puters may execute programs under weakly consistent memories, where threads do not have a
coherent view of the memory. This memory model is much harder to analyze, and was out of the
scope of this internship.

� locks: it could be interesting to take into account locks, and divide interferences in the cases of
whether a variable is locked or not. This could be implemented using Bddapron.

� setting the �ow-insensitivity: being able to set the �ow-sensitivity in the interferences would result
in more precise analyses, such as Concurinterproc does. This way, we might be able to prove
usual mutual exclusion algorithms, which is not possible at the time of writing. This would still
be di�erent from Concurinterproc, as we would be able to choose a precision, from what is
currently proposed to what Concurinterproc proposes. Also, we could locally be more precise,
and only where it matters, to scale better.

� other abstractions: interferences can be represented and abstracted in other ways, but I did not
have the time to try anything else.

� weaker relational domains: we did not test weaker relational domains such as octagons extensively,
but they surely could handle an analysis almost as precise but at a reduced cost.

� parallelization: when we analyze one thread t, we only need to read the other interferences, and
then to modify the domain and interferences of the thread t. This way, the analysis of each thread
is independant and could be parallelized in the implementation.

� iterations of the analysis: at each step of the analysis, we are currently analyzing each thread. It
might be interesting to use other iterations, more intelligent, such as chaotic iterations.

� on the implementation side, it would be interesting to support backward analysis, as well as pro-
cedures.

� it would also be interesting to test this approach on a real programming language, such as the C,
and test it on real programs then.
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