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Abstract

Designing correct numerical programs using floating-point arithmetic is a challenge for non-experts. As a
finite set of numbers is representable, computations can have roundoff errors. Accumulating these errors in a
program can lead to numerical instabilities and bugs. Thus, having tools being able to bound roundoff errors
in programs helps assessing the reliability of a given program. Exactly bounding these errors is undecidable,
so one must resort to approximations. Static analyzers can bound the difference between the ideal, real-valued
behavior of a program and its actual behavior. Most static analyzers are not formally verified, so that bugs in
the analysis may exist and yield wrong results. Another approach would be to ask the programmer to describe
numerical programs in terms of real-valued computations, and then let a compiler handle the translation into an
optimal floating-point program. In particular, the compiler can perform mixed-precision tuning: it can choose
to strike a given balance between the precision and the computational cost of the computations using different
floating-point formats. This approach has been implemented in a tool called Daisy and written in Scala. Daisy
also provides guarantees on the behavior of the generated programs by giving error bounds. To strengthen these
guarantees, a certificate checker has been developed in two theorem provers – Coq and HOL4 – to formally prove
that the interval-based analysis of Daisy is sound. It was able to check analyses where the floating-point format
is uniform. During my internship, I worked on extending the certificate checker to the mixed-precision, interval-
based analysis of Daisy. I also worked on a formalization of affine arithmetic in Coq. This report presents an
overview of Daisy and its certificate checker, and a detailed presentation of the extensions I worked on.



1 Introduction

Floating-point numbers are a common choice when designing numerical programs. The hardware
implementation of most operations makes them easy to use. They strike a good balance between
precision and computational cost compared to arbitrary precision computations. In the past, im-
plementations of floating-point arithmetic were not unified and yielded different results on different
platforms. Now, thanks to the IEEE 754 standardization of floating-point arithmetic, numerical
programs are more portable and mathematical reasoning about floating-point arithmetic is now
possible. As floating-point numbers cannot exactly represent every real number, computations may
not be exact and have roundoff errors. Using the IEEE 754 standard, it is possible to bound these
roundoff errors. This standard also lead the way to subtle floating-point numerical computations
ensuring minimal losses of precision, such as the one presented by Ogita et al. [17], using compen-
sations to gain back accuracy. However, even if this standard is now well-known by a specialized
community, floating-point computations are not well understood by most developers who may write
unstable numerical programs.

1.1 Designing numerical programs is still a difficult task

Goldberg [9] warns developers that designing numerical programs working on floating-point numbers
is a difficult task that should not be neglected. Two main features of floating-point arithmetic are
mentioned. First, roundoff errors entailed by the base 2 representation of floating-point numbers
and the finiteness of the precision can add up and create catastrophic errors. Second, floating-point
arithmetic does not satisfy most algebraic properties valid on real numbers.

Even in really specialized domains, the design of numerical programs has been overlooked. An
example of a disastrous consequence is the Patriot missile accident that happened in Dhahran in
19911: 0.1 was not exactly representable in the base 2 floating-point system used, so that roundoff
errors were accumulated over time, resulting in a missile deviating from its intended target and
hitting US barracks.

Another example of catastrophic errors resulting in a counterintuitive behavior is the computa-
tion of the sequence defined below, and taken from [16]. For all n ≥ 2, un ≥ 6, so there is no risk of
division by zero, and this sequence is well defined. The limit of this sequence is 6. However, due to
roundoff errors accumulating at each step, a program computing this sequence using floating-point
numbers converges to 100, even if an extended precision is used.

u0 = 2

u1 = −4

un+2 = 111− 1130

un+1
+

3000

un+1 · un
Developers aware of the consequences of roundoff errors usually use the most precise floating-

point format available rather than the optimal precision, to reduce the risk of catastrophic errors.
However, this results in a loss of performance.

To design safe, and yet efficient numerical programs, it is necessary to resort to automatic tools.
These tools should be automatic, as the user usually has not a deep understanding of the technical
details concerning floating-point arithmetic. One way to assist developers is to design a static
analyzer being able to compare the ideal, real-valued behavior of a program with its floating-point
based behavior, by bounding the value and roundoff error of each variable in a program. This will be

1https://web.archive.org/web/20100702180720/http://mate.uprh.edu/~pnm/notas4061/patriot.htm
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described in the next subsection. Static analyzers can also be used to help choose the right precision
for each variable in a program. Recently, the idea of automatically choosing the right precision for
the right performance has been extended to mixed-precision computations [18, 4], where the goal is
to achieve the fastest computations given a maximal precision error.

A similar approach, described in subsection 1.3 is to ask the developer to describe numerical
programs using real numbers, and then let a tool perform a translation to floating-point numbers.
This approach also requires a static analyzer to perform the translation. On the contrary to a
static analyzer, a compiler manipulating real-based programs is also able to perform aggressive
code optimizations, using algebraic identities valid on real numbers. Such a compiler also chooses
the optimal precision for each variable.

1.2 Static analysis of floating-point programs

To ensure safety of numerical programs, one approach is to bound the difference between the ideal,
real-valued behavior of a program, and its floating-point-based behavior. It is possible to find such
upper bounds using static analyzers. These analyzers are fully automatic, and do not require to run
the analyzed program, but only to read its source code. As problems related to program analysis
are mostly undecidable, static analyzers usually compute an over-approximation of the analyzed
program behavior.

Soundness This over-approximation property is fundamental and should be guaranteed by any
static analysis: if only over-approximations are performed, every behavior of the program will be
captured by the analysis. In that case, the analysis is said to be sound. In particular, if a static
analyzer does not find any bugs in a program, then this program does not have any bugs. The goal
of static analysis developers is to find a good balance between the precision of the analysis and its
performance. If a static analyzer is precise but really slow, it will probably be unused. If an analyzer
is too imprecise, it can then declare too many safe programs unsafe due to over-approximations,
and there would be no point in running it.

Implementation bugs By definition, a sound static analysis provides theoretical guarantees
on the results it computes. However, the proof of soundness done on paper may contain invalid
reasoning, yielding a false result. More importantly, a static analyzer implemented on a machine
can also differ from the designed static analysis, due to implementation errors and bugs. This is
due to the fact that there is no formal proof that the static analyzer actually performs a given static
analysis. An exception to this argument is the Verasco static analyzer. In that case, Jourdan et al.
[14] used the Coq proof assistant to implement a static analyzer and prove its soundness. As such,
Verasco gives much stronger guarantees concerning the soundness of both the static analysis and its
implementation, compared to other static analyzers. A downside to this approach is that it takes
much more development time and may trade performance for easier proofs.

Floating-point analysis Concerning floating-point programs, a well-known analysis consists in
approximating each variable by an interval. This will be presented in section 2.2. Analyses based on
the interval domain have a low computational cost, but their precision can be improved. In Fluctuat
– a state-of-the-art static analyzer of floating-point programs – Goubault and Putot [11] use a more
expressive numerical domain called “affine real form plus error term domain”. This domain uses
affine arithmetic to keep the real-value range of each variable. Affine arithmetic is a numerical
domain usually more precise than interval arithmetic. To gain more precision, this domain also
tracks the roundoff errors separately.
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Static analyzers are thus able to warn the user of possible errors in the programs they design.
These analyzers must be sound, but this soundness property might be violated by some error, either
in the paper proof of soundness or due to an implementation error. The use of a static analyzer does
not overcome the design issues mentioned before. It cannot perform optimizations either. Rather,
it may help the developer find and correct flaws in his code a posteriori.

1.3 A compiler from reals to floats

As we have seen in the last subsection, static analysis of floating-point programs relates the result
of an ideal, real-valued computation with its actual, floating-point counterpart. By definition, these
static analyzers take as input floating-point programs. A slightly different approach is to change the
input language, so that the user would give real-valued programs in input. Then, a tool performs
the translation into a floating-point program. This tool will still contain a static analysis phase, to
guarantee that the compiled floating-point program behaves similarly to the input program. This
approach has some really interesting properties: as the input programs are described in terms of
real numbers, performing aggressive optimizations is now possible. Such a compiler can also choose
the precision of each variable, and strike a given balance between precision and performance.

This concept of compiler for real numbers has been developed by my advisor in [6], and is
available as a tool called Daisy. Daisy is written in Scala, and will be presented in more depth
in section 2.5. A recent development has been to formally verify the analysis made by Daisy, and
prove that this analysis is sound. It would have been possible to rewrite Daisy’s analysis into a
proof assistant, and show that this implementation is sound. This design would have been similar
to Verasco’s. However, this approach would have been complicated here, as Daisy’s framework is
used to implement and test a few different ideas. Instead, the formal verification of Daisy relies on
certificates, and consists into two parts. The core of Daisy has been extended to include a certificate
generator. When an analysis is performed, Daisy describes the result of its analysis into a file called
a certificate. This certificate is then run through a certificate checker, checking that the analysis
performed by Daisy was right. The certificate checker was written in both Coq [5] and HOL4 [10],
two common theorem provers. In both languages, it is formally proved that if the checker validates
a certificate, then the analysis performed was sound.

1.4 Extension to mixed-precision floating-point arithmetic

The IEEE 754 standard specifies three different floating-point formats (32, 64 and 128 bits), from
a low-cost, low-precision format to a higher-cost, higher-precision format. Lately, tuning automat-
ically floating-point programs using mixed-precision floating-point arithmetic has become increas-
ingly popular [18, 4]. This mixed-precision tuning lets users choose a better balance between the
precision of a program and its computational cost. For example, mixed-precision tuning allows
trading some precision for a lower computation time and a lower energy consumption. In other
cases, this tuning can result in more precise results having a low computational overhead. Recently,
Daisy gained support for mixed-precision tuning.

However, this mixed-precision tuning was not supported in the formal verification of Daisy.
When I arrived, the certificate generation and certificate checking was already developed for single-
precision floating-point arithmetic in both Coq and HOL4. This formalization was done by Heiko
Becker (a PhD student in the lab), Eva Darulovà (my supervisor) and Magnus Myreen (Associate
Professor at Chalmers University, Sweden). My main work during this internship has been to extend
this formalization in both Coq and HOL4 to mixed-precision arithmetic. From a conceptual point of
view, such an extension seems to be a fairly simple task. However, understanding the formal proofs
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in two different theorem provers and extending these formal proofs turned out to be challenging.

1.5 Outline

The next section introduces background material. Section 3 describes my main contribution during
this internship, which is the extension of the formal checking of Daisy’s analyses in mixed-precision.
In Section 4, I describe another ongoing work, which is a formalization of affine arithmetic in Coq.
Section 5 provides a brief related work. The conclusion of my report also describes other side
projects I have carried out during my internship.

2 Background on Daisy

In this section, I first provide a brief overview on floating-point arithmetic. I describe two ways to
do range analysis, using either interval or affine arithmetic. Then, I introduce the Coq and HOL4
proofs assistants, before giving an overview of Daisy and of its formalization.

2.1 Floating-point arithmetic

A much more comprehensive coverage of floating-point arithmetic can be found in [16]. The IEEE
754 standard is defined in [1].

Floating-point numbers are defined with respect to a format, consisting in four integers: a
base number β (sometimes called a radix), a precision p, a minimal exponent emin and a maximal
exponent emax (with emin < emax). For example, the format of single-precision floating-point
numbers defined by the IEEE 754 standard is φ32 = (2, 24,−126, 127), and the format of double-
precision numbers is φ64 = (2, 53,−1022, 1023). Once a format φ = (β, p, emin, emax) is fixed, the
set of finite floating-point numbers is:

FPφ = {(−1)s ·M · βe−p+1 | s ∈ {0, 1},M ∈ N, e ∈ Z, 0 ≤M < βp, emin ≤ e ≤ emax}

The number M is the integral significand and usually named the mantissa. The precision p of the
format corresponds to the maximal number of digits of the number M written in base β.

Normal and subnormal numbers The set of floating-point numbers defined above can be
normalized, and split into a set of normal numbers and a set of subnormal numbers. The set of
subnormal numbers is the one having the exponent fixed to e = emin.

FPφ ={(−1)s ·M · βe−p+1 | s ∈ {0, 1},M ∈ N, e ∈ Z, emin ≤ e ≤ emax, βp−1 ≤M < βp}
∪ {(−1)s ·M · βemin−p+1 | s ∈ {0, 1},M ∈ N, 0 ≤M < βp−1}

Subnormal numbers complicate operator implementations and proofs, but their presence ensures
more stable numerical programs, due to the fact that there is no gap between 0 and βemin (the
underflow is gradual and not abrupt). In the following, we assume that φ is fixed and that β = 2.

Overflows and underflows An operation overflows if its real-valued computation results in a
floating-point number having an exponent e > emax. There are two definitions of underflow: an
operation underflows if its result is a subnormal number, or it underflows if its result is rounded to
zero. We assume that the first definition is used in what follows.
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Rounding modes The IEEE 754 format specifies that common operations on floating-point
numbers (such as addition, multiplication, square root, ...) should behave as if they were computed
on real numbers and then rounded to a given floating-point number. In the case of the addition,
this means that for a binary operator ◦ ∈ {+,−,×, /, } on real numbers and its counterpart ◦FP on
floating-point numbers, the following equality should hold for a given rounding function rnd, and
for every pair (x, y) of floating-point numbers:

x+FP y = rnd(x+ y)

Several rounding modes are specified in the IEEE standard. The most common rounding mode
is called rounding to nearest with ties to even; this function will be written RN in what follows.
This basically means that a real number r is rounded to the nearest representable floating-point
number. If r is equidistant from two floating-point numbers, there is a tie. In that case, the result
of the rounding is the floating-point number having an even integral significand. In the following,
rounding to nearest with ties to even will be used by default. However, we will also use rounding
to −∞ and rounding to +∞, written respectively RND−∞ and RND+∞. The rounding to the
left (or −∞) of a real number r is the closest floating-point number less or equal to r. Similarly,
rounding to +∞ of a real number r is the closest floating-point number greater or equal to r.

1 + δ abstraction If x is a real number satisfying 2emin ≤ |x| ≤ (2p− 1) · 2emax−p+1, it is possible
to prove the following relative error bound: |x−RN(x)| ≤ |x|2−p. This relative error bound can
be simplified and rewritten into what is called the 1 + δ abstraction: RN(x) = x · (1 + δ) with
|δ| ≤ 2−p. Moreover, if ◦ ∈ {+,−,×, /}, |δ| ≤ 2−p and if x ◦FP y is a correct operation involving no
underflow and no overflow:

x ◦FP y = (x ◦ y) · (1 + δ)

The value 2−p is called the machine epsilon of a floating-point format, and is usually written εM .

Special cases In addition to floating-point numbers, the IEEE 754 norm adds a few constructors:

– +∞ and −∞ are defined in the standard, as well as signed zeroes: there is +0 and −0.

– In the case of invalid operations such as 0/0, the Not a Number (NaN) constructor is used.

On the contrary to real numbers, binary operations are not associate and not distributive any-
more. Examples can be found in [16]. Moreover, Boldo et al. [3] points out that in floating-point
arithmetic, even naïve optimizations such as replacing x+0 by x are not valid anymore (for example,
−0 + 0 evaluates to +0).

In the following, we will only consider normal floating-point numbers and assume that the
operations are valid, and do not underflow or overflow.

2.2 Interval analysis

This subsection presents how interval analysis works for arithmetic expressions. The idea is to
soundly bound expressions by an interval. To do so, we need to define operators on intervals that
will capture the behavior of computations on expression. For example, to analyze the sum of two
expressions, we will need to define a similar sum operator on intervals.
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Interval arithmetic In the case of interval arithmetic, we can define the addition, subtraction
and multiplication of real-numbered intervals as:

[a; b] +# [c; d] = [a+ c; b+ d] [a; b]−# [c; d] = [a− d; b− c]
[a; b]×# [c; d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

The definition of the division of intervals is similar, but particular attention should be devoted to
the denominator to avoid division by zero. As we want our analysis to be sound, we need to have
sound interval operators. In this case, it means that for ◦ ∈ {+,−,×}, ◦# should over-approximate
◦, i.e:

x ∈ [a; b] ∧ y[c; d] =⇒ x ◦ y ∈ [a; b] ◦# [c; d]

Interval analysis Let us consider arithmetic expressions consisting in constants, variables, or
binary operations between two expressions:

e ::= e1 ◦ e2 | c ∈ R | X ∈ V ◦ ∈ {+,−, ∗, /}

Here V is a set of variables. In the case of real interval analysis, if e is an expression, it is simple
to define an interval analysis function. This function would take as argument an expression e and
a map ρ from variables to intervals, and would compute an interval bounding expression e. In the
following, this is written as JeK(ρ), and defined recursively as follows:

JcK(ρ) = [c; c] JXK(ρ) = ρ(X) Je1 ◦ e2K(ρ) = Je1K(ρ) ◦# Je2K(ρ)

The case of constants is simple, and the case of variables just uses the map ρ. The definition of
the analysis of binary operations is defined in a general setting, and relies on the abstract operators
◦# defined in interval arithmetic. The fundamental property that the analysis should possess is that
every case that may happen when evaluating the expression to a real numbers should be captured
by the interval analysis. This is the soundness of the analysis. This property can be formally stated
as follows: if there is a map α : V → R from variables to real numbers, such that for all variable v,
α(v) ∈ ρ(v), and if an expression e evaluates to a value x using the mapping α, then x ∈ JeK(ρ).

A simple example of this real interval analysis is the following: if ρ(X) = [0; 10] and ρ(Y ) = [0; 5],
then JX + Y K(ρ) = [0; 15].

Floating-point analysis In most settings, static analyzers of floating-point programs will use
themselves floating-point arithmetic to perform the analysis. In that case, performing a sound
interval analysis using floating-point numbers is a bit more complicated. For example, the addition
of two floating-point intervals [a, b] and [c, d] should be defined as [RND−∞(a+c);RND+∞(b+d)].

2.3 Affine arithmetic

Performing range analysis using interval arithmetic is simple and efficient. However, interval
arithmetic is sometimes really imprecise: if x ∈ [0; 10], interval arithmetic can only infer that
x − x ∈ [−10; 10]. This is due to the fact that intervals do not keep track of relations between
variables. To have a more precise analysis in that case, one way is to replace interval arithmetic by
affine arithmetic [20], as affine arithmetic keeps track of linear correlations between variables.
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Definition and concretization An affine form is defined as x̂ = x0 +
∑n

i=1 xi · εi, with the
coefficients xi being real numbers or floating-point numbers. Each epsilon represents an indepen-
dent noise term, ranging between -1 and 1, so that an affine form represents the sets of numbers
being computable when each noise term moves between -1 and 1. More formally, the set of values
represented by an affine form can be represented using a concretization function γ:

γ(x̂) = {v | ∃(n1, . . . , nn) ∈ [−1; 1]n, v = x0 +
n∑
i=1

xi · ni}

In the following, v ∈ x̂ is a shortcut meaning v ∈ γ(x̂). For example, the affine form 5+ε1 represents
the set of real numbers ranging from 4 to 6, so 4.5 ∈ 5 + ε1.

Comparison with intervals We define the radius of an affine form x̂ = x0 +
∑n

i=1 xi · εi as:
rad(x̂) =

∑n
i=1|xi|. We can then notice that every value of this affine form is contained in the

interval [x0 − rad(x̂);x0 + rad(x̂)], and that the concretization function γ could also be defined as
γ′(x̂) = [x0− rad(x̂);x0 +rad(x̂)]. Conversely, an interval [a; b] is represented by the following affine
form: a+b

2 + b−a
2 ε1.

As mentioned before, the advantage of affine arithmetic over interval arithmetic is its ability to
keep relations between variables. If we have x ∈ [0; 10], the only property that we can infer using
interval arithmetic about x− x is that x− x ∈ [−10; 10]. On the contrary, using an affine form, we
can write that x ∈ 5+5ε1. Then, we are able to infer that x−x ∈ 0+0ε1, and have an exact result.

However, affine arithmetic is not strictly more expressive than intervals. For example, if x ∈
[−1; 3] and y ∈ [0; 10], then x · y ∈ [−10; 30]. Using affine arithmetic, we can write x ∈ 1 + 2ε1 and
y ∈ 5 + 5ε2. Thus, x · y ∈ 5 + 10ε1 + 5ε2 + 10ε1ε2, so x · y ∈ [−20; 30].

Addition of two affine forms Let x̂ = x0 +
∑n

i=1 xi · εi and ŷ = y0 +
∑n

i=1 yi · εi be two affine
forms. Here, the noise terms are supposed to be the same for x̂ and ŷ. This is not a restriction
since we could extend affine forms with noise terms having a coefficient 0. We define the addition
of two affine forms as follows:

x̂+# ŷ = (x0 + y0) +

n∑
i=1

(xi + yi)εi

A simple induction can be used to check that the addition of two affine forms is sound:

Lemma (Soundness of +#). If there is an n-tuple (v1, . . . , vn) ∈ [−1; 1]n with x = x0 +
∑n

i=1 xivi
and y = y0 +

∑n
i=1 yivi, then x+ y ∈ γ(x̂+# ŷ).

Multiplication of two affine forms One could define the multiplication of two affine forms as:
A ×# B = x0 · y0 +

∑n
i=1(x0 · yi + xi · yj)εi + (

∑n
i=1 xiεi) · (

∑n
j=1 yjεj). However, this adds a lot

of new noise terms (the εiεj), and prevents the design of scalable analyses. It is still possible to
trade some precision to have fewer noise terms. A simple bound for the last sum is: |

∑n
i=1 xiεi| ·

|
∑n

i=1 yiεi| ≤ rad(A) rad(B). Thus, a more efficient definition of the product of affine forms is:
A ×# B = x0 · y0 +

∑n
i=1(x0 · yi + xi · yj)εi + rad(A) · rad(B) · εn+1, where εn+1 is a fresh noise

symbol. The soundness of ×# is also proved by induction on the affine forms.

Inversion of an affine form When an affine form x̂ represents only positive numbers, it is
possible approximate the inverse of an affine form x̂ by an affine form ŷ = αx̂ + β + δεn+1, where
εn+1 is a fresh noise term. An explanation is provided in appendix B. Otherwise, if x̂ contains only
negative numbers, a similar approximation is possible. If 0 is contained in x̂, the result is undefined.
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Affine arithmetic and roundoff errors Another interest of affine arithmetic is its power when
analyzing roundoff errors in floating-point computations. Affine arithmetic is really precise on small
ranges, such as the one found when analyzing roundoff errors [6].

2.4 Coq and HOL4, two proof assistants

Coq [5] and HOL4 [10] are two mainstream theorem provers. In both cases, the user proves inter-
actively a goal under some given hypotheses. Theses hypotheses can be manipulated using tactics.
Proving a result in a theorem prover gives a strong confidence in it, as it is impossible to skip some
details, or omit some cases. However, these guarantees come at a cost: the proofs are much more
involved than on paper, because each step has to be explained in the proof assistant’s language. It
is usually more difficult and time consuming to prove theorems in a proof assistant than on paper,
but the confidence in the established result is much higher. Of course, these guarantees depend
on the reliability of a theorem prover: in the presence of bugs, it might be possible to prove false
results. In both Coq and HOL4, the kernel that is used to perform the proofs is small, so the chance
there is a bug is rather small.

This paragraph tries to highlight some discrepancies between Coq and HOL. A more detailed
comparison can be found in [21]. Coq is based on intuitionistic logic, where as HOL4 uses classical
logic. This means that in Coq and contrary to HOL4, the law of excluded middle p ∨ ¬p does not
hold. Coq also distinguishes proposition from booleans. This means that sometimes we needed to
define a boolean equality function for new defined objects. On the contrary to HOL4, Coq supports
dependent types, which I used in some of my prototypes of formalization of affine arithmetic. This
allows for example to define a subset type B of rationals between −1 and 1. Every element b ∈ B
then carries a value and a proof that this value is between −1 and 1.

I always started proving theorems in Coq, and then porting them to HOL4. Coq usually involves
more complex designs and proofs, that are then easily portable to HOL4. Currently, the development
is really similar.

2.5 Daisy, a compiler for reals

Daisy2 is a framework developed around the concept of compiler for real-valued program mentioned
before. Input programs are also written in Scala, using a real-valued specification language. A
program is a collection of functions, and each function consists in a precondition, a body and a
postcondition. Preconditions give mandatory ranges for the function parameters. Without these
ranges, it would be impossible to compute the relative errors used in the 1 + δ abstraction. Post-
conditions enforcing a maximal roundoff error on a computation can also be specified, but are not
mandatory. A function body consists in a succession of variable bindings, returning an expression.
An example of input is given in Fig. (1a). The output consists in a program using floating-point
arithmetic and written in Scala (but the backend could be ported to another language easily); an
example of mixed-precision output is given in Fig. (1b). In addition to this program, Daisy displays
an upper bound on the difference of the results returned by the ideal function and the floating-point
one. That is, given a function f : R→ R, and an input domainD ⊂ R (defined by the precondition),
if f̃ is the function generated, Daisy returns an upper bound of maxx∈D

∣∣∣f(x)− f̃(RN(x))
∣∣∣.

The analysis performed by Daisy is actually split into two parts:

– One is the real range analysis, computing the real-valued range of every expression.
2https://gitlab.mpi-sws.org/AVA/daisy-public
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import daisy.lang._
import Real._

object Sine {
def sine(a: Real) = {
require(−1 <= a && a <= 1)
val three = − a∗a∗a / 6
val five = a∗a∗a∗a∗a / 120
a + three + five

}
}

(a) Input code

object Sine {
/*@pre : ((-1. <= a) && (a <= 1.))*/
def sine(a : Double) : DoubleDouble = {
val three : DoubleDouble = (((−( a) ∗ a) ∗ a) / 6)
val five : Double = ((((( a ∗ a) ∗ a) ∗ a) ∗ a) / 120)
(( a + three) + five)

}
}

(b) Generated code (in mixed-precision)

Figure 1: Running Daisy on a Taylor expansion of sine

– Given the result of the previous analysis, the roundoff errors of every expressions are then
computed using the 1 + δ abstraction mentioned in Section 2.1.

Splitting this analysis in two parts yields more precise results than doing an analysis keeping track of
only the floating-point range, because the computation of the error bound of an expression actually
depends on the real ranges and roundoff errors of its subexpressions. To compute the ranges, the
analysis can rely on interval arithmetic or affine arithmetic.

Limitations For now, Daisy does not support control-flow statements such as if and while. This
is due to the fact that if a boolean condition compares two floating-point numbers, roundoff errors
may create a divergence in the flow of the program: the real-valued program may enter the if
branch, but the floating-point program may enter the else branch. Concerning while statements,
Daisy would also need to find an upper-bound on the number of iterations. This is a well-known
issue, and Darulova and Kuncak [6] explain why tackling divergence is challenging. Daisy does not
support inter-procedural analysis of functions.

In Daisy’s current state, overflows, NaNs, and ranges containing only subnormals are considered
to be faults, and stop the analysis. Daisy assumes that operations do not overflow. However, thanks
to the real range analysis, checking that no overflow happen should be simple to implement. The
use of the 1 + δ abstraction is sound on ranges of floating-point numbers containing at least one
normal number.

Daisy uses rationals in its implementation. This avoids having to deal with different rounding
modes to ensure the soundness of the analysis, but it is quickly inefficient on big computations.

Mixed-precision Daisy supports some mixed-precision tuning of programs. It is based on a
delta-debugging algorithm used in Precimonious [18]: at first, all variables use the highest available
precision. Then, some chosen variables are given a lower precision, and the algorithm checks if
the modified program is precise enough. After this, the algorithm backtracks or continues. For
debugging purposes, I implemented a small parser within Daisy that can read a (maybe partial)
assignment of precision for variables.

2.6 Verifying Daisy’s analyses

The formal verification of Daisy consists in a verified result checker. When Daisy is run, it generates
a certificate encoding the result of its analysis. Then, the certificate checker (written in both Coq
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and HOL4) is run on this certificate. It has been formally proved that if the certificate checker
accepts a certificate then the performed analysis was sound.

Following the execution of the checker, we will first see what is encoded in a certificate, before
seeing what is checked, and how these checks relate to the soundness of the analysis.

Certificates When Daisy has finished the analysis of a given function, it stores the results in a
certificate. Each certificate consists in:

– definitions of the analyzed expressions (and variable bindings) used in the input function;

– a map from these expressions to their corresponding real ranges and roundoff errors;

– preconditions giving for each input variable of the function, the range of this variable.

The certificate ends with a theorem stating that the checking functions should return true. When
a proof assistant is run on a certificate, it uses the definitions of the expressions and the maps to
compute the checking function. The example shown in Fig. (3) will be detailed in the next section.

Checking functions The certificate checker consists in two main parts, similar to the analysis
performed by Daisy. That is, the certificate checker first verifies that the real ranges (this has been
called interval checker) and that the error ranges (called error checker) have been computed correctly
in Daisy. Currently, both interval and error checkers analyze again the expressions, and return true
if their results are stricter or equal to what was obtained by Daisy. Each checker function runs
recursively on expressions to check the validity of the ranges or the error bounds.

Deducing the soundness of the analysis In this part, we show how to deduce that an analysis
was sound given the positive result of the checking functions.

Proving the soundness property requires being able to capture the behavior of computations
in Scala. To do this, an inductive predicate eval_exp was defined. This relation states that a
given expression e under an environment E mapping variables to values may evaluate to a floating-
point number f (assuming a fixed floating-point precision of 53 bits). It uses the 1 + δ abstraction
mentioned before and is thus non-deterministic. In both Coq and HOL4, this would have been
written as eval_exp e E f. A simpler inductive predicate eval_exp_real was also defined to
express real-valued computations.

We also need to use interval arithmetic. In both Coq and HOL4, real-valued interval arithmetic
has been formalized, and its operations have been proved sound.

Then, the soundness proof concerning the interval analysis is written as:

Theorem validIntervalbounds_sound e absenv P E:
validIntervalbounds e absenv P = true → eval_exp_real E e vR →
fst (fst (absenv f)) <= vR <= snd (fst (absenv f)).

In that theorem, e is an arithmetic expression, the analysis result absenv maps expressions to a
range containing the real evaluated expression and a computation error. P is the precondition on
the ranges of the input variables and E is an environment mapping variables to real numbers. The
theorem states that if the range checker returns true and if the expression e evaluates to vR in the
reals, then vR is contained in the interval given by the analysis result. We can see that this is a
soundness theorem: every possible real-valued computation is captured by the result of the analysis.

The soundness statement of the error analysis is:
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Theorem validErrorbound_sound e absenv P E1 E2:
approxEnv E1 absenv E2 → validIntervalbounds e absenv P = true →
validErrorbound e absenv = true → eval_exp_real E1 e vR → eval_exp E2 e vF →
| vR − vF| <= snd (absenv e).

It states that if the range checker and the error checker return true, and if the expression e evaluates
to vR in real-valued precision and may evaluate to vF in floating-point arithmetic, then the absolute
value of vR − vF is less than the error bound found by Daisy, and given in the second component
of the analysis result absenv.

Variable bindings The soundness results presented above showed the soundness of the range and
error checker for expressions. However, Daisy also supports let-bindings, binding variables with
expressions into either another let-binding or an expression. The certificate checker also supported
the checking of these let-bindings.

Due to the presence of the variable bindings, two different environments E1 and E2 were needed
in the soundness theorem of the error analysis: in the soundness proof of the error validation for
commands, the let-bound variables do not have the same values depending on the real or floating-
point evaluation, and thus the environments are just approximating each other.

3 Contribution: extending the formal checking to mixed-precision

When I arrived, this formalization was already developed for single-precision floating-point arith-
metic analyses using only intervals. My main task during this internship has been to extend the
certificate checking to handle mixed-precision computations. To perform this task, I had to imple-
ment new features and port a few others:

– I encoded the different floating-point formats into what I called machine types.

– I generalized the definition of arithmetic expressions.

– I updated the semantics of eval_exp and its variable-bindings counterpart.

– I designed a typing phase needed to know the floating-point precision used in each expression.

– Then, I generalized the checkers of ranges and errors, and their soundness proofs.

– The final step was to update the certificate generator within Daisy, to support the updates of
the definitions.

Following the previous development, I first focused on generalizing the proofs in Coq, before porting
everything to HOL4.

In the following, I will use as a running example a computation of the Taylor expansion of
sine around zero. The code given in input to Daisy is presented in Fig. (1a), and the output is
in Fig. (1b). In this example, I suppose that the floating-point format of each variable is fixed
to double-precision, except variable three which has a quadruple-precision format. Parts of the
certificate (for the Coq checker) are presented in Fig. (3), and will be explained in the coming
sections.
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3.1 Machine Type

In the uniform-precision formalization, the floating-point format of each variable was fixed to double-
precision and its corresponding machine epsilon was hard-coded. To change this, I added a repre-
sentation of floating-point formats called machine types. It currently encodes the machine epsilon,
as the other parameters defined by a floating-point format are not used currently. In both Coq
and HOL4, the machine type is described as a sum type representing either real-based precision,
32, 64, 128 or 256 bits long floating-point format, respectively written M0, M32, M64, M128, M256.
The real-based precision machine type is needed because the eval_exp_real predicate is just a
special case of eval_exp. The mapping from machine types to their corresponding machine epsilon
is performed by a function called meps. In Scala, computations involving two different machine
precision yields a result having the highest precision of the two. To specify this behavior, I defined
a lattice on the machine types, consisting in total order w and a join operator t. The order is:
M256 w M128 w M64 w M32 w M0. Then, the join of two elements is the maximum element with
respect to the order defined above. This ensures the crucial property that if the join of m1 and
m2 is M0, then both m1 and m2 are also M0. As mentioned in section 2.4, I also needed to define a
boolean equality operator in Coq.

At first, I defined the machine type to be just a positive rational, but this created much more
difficult proofs. Using a sum type is much easier, as some proofs can then be done automatically
by case analysis. For example, the property m1 t m2 = M0 =⇒ m1 = m2 = M0 can be proved
quickly in Coq by using the destruct tactic on m1 and m2. This tactic creates subgoals for each
constructor of m1 and m2, and most of them will entail a contradiction.

3.2 Generalizing arithmetic expressions

In the previous formalization, arithmetic expressions did not explicitly depend on a machine type.
Now, constants are defined as pair, specifying the value of the constant and its precision.

I also needed to add a new constructor to the expressions, called Downcast: this operator forces
the cast of an expression to a lower precision. On the contrary to an increase in precision, a Downcast
has to be explicit as it may introduce new roundoff errors.

Thus, expressions can now be:

– a variable whose identifier is a natural number;

– a rational constant in a given floating-point format;

– a unary expression consisting in a unary operator (− or /) and an expression;

– a binary expression;

– a downcast of an expression, consisting in a machine type and an expression.

The formal definitions of the expressions are presented in Fig. (2). Fig. (3a) shows how −a3 is
defined in a certificate, where the natural number 0 represents variable a.

3.3 Generalizing eval_exp

The eval_exp predicate is used to state how an expression is computed in Scala. As mentioned in
the previous section, this predicate is required to express the soundness of the certificate checker. I
updated this predicate to take into account mixed-precision computations.
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Inductive exp: Type :=
Var: nat → exp

| Const: mType → Q → exp
| Unop: unop → exp → exp
| Binop: binop → exp → exp → exp
| Downcast: mType → exp → exp.

(a) In Coq

val _ = Datatype ‘
exp = Var num

| Const mType ’ v
| Unop unop exp
| Binop binop exp exp
| Downcast mType exp‘

(b) In HOL4

Figure 2: Formal definition of the expressions

Definition ExpVara0 :exp Q := Var Q 0.
Definition UMinExpVara0 :exp Q := Unop Neg ExpVara0.
Definition MultUMinExpVara0ExpVara0 :exp Q := Binop Mult UMinExpVara0 ExpVara0.
Definition MultMultUMinExpVara0ExpVara0ExpVara0 :exp Q := Binop Mult

MultUMinExpVara0ExpVara0 ExpVara0.
(a) Defining −a3

Definition defVars_sine :(nat → option mType) := fun n ⇒
if n =? 0 then Some M64 else if n =? 3 then Some M128 else if n =? 4 then Some M64 else None.

(b) Defining the type map

Definition absenv_sine :analysisResult :=
fun (e: exp Q) ⇒
if (expEqBool e ExpVara0) then (((−1) /(1) , (1) /(1) ) , (1) /(9007199254740992) )
else if (expEqBool e UMinExpVara0) then (((−1) /(1) , (1) /(1) ) , (1) /(9007199254740992) )
else if (expEqBool e MultUMinExpVara0ExpVara0) then
(((−1) /(1) , (1) /(1) ) ,(243388915243820072108964779655169)

/(730750818665451459101842416358141509827966271488) )
else if (expEqBool e MultMultUMinExpVara0ExpVara0ExpVara0) then
(((−1) /(1) , (1) /(1) ) ,(32910091146424128150607570305662412414463026960948689432960040961)

/(59285549689505892056868344324448208820874232148807968788202283012051522375647232) )
else ((0/1,0/1) ,0/1) .

(c) Defining the analysis result (in the Coq code, the / are actually #)

Theorem ErrorBound_sine_Sound :
CertificateCheckerCmd final_command absenv_sine thePrecondition_sine defVars_sine = true.

Proof.
cbv; auto.

Qed.
(d) Final result

Figure 3: Excerpts of Daisy’s certificate when run on the example of Fig. 1a

The updated eval_exp predicate takes into account two environments: one mapping variables
to values, and one mapping variables to machine types. For the sake of readability, the predicate
eval_exp is renamed as ⇓, so that eval_exp Env e v m is equivalent to e, Env ⇓ v, m (here,
e is an expression, Env is consists in the two environments, v is a number and m is a machine
type). The main rules are presented as inference rules in Fig. (4). Let us phrase the case of a
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E n = (v, m)

Var n, E ⇓ v, m Var
|δ| ≤ meps(m)

Const m n, E ⇓ n · (1 + δ), m
Const

f1, E ⇓ v1, m1 f2, E ⇓ v2, m2 |δ| ≤ meps(m1 tm2) ((op = /) =⇒ v2 6= 0)

Binop op f1 f2, E ⇓ (v1 op v2) · (1 + δ), m1 tm2
Binop

f1, E ⇓ v1, m1 m1 w m |δ| ≤ meps(m)

Downcast m f1, E ⇓ v1 · (1 + δ), m
Downcast

f, E ⇓ v, m
−f, E ⇓ −v, m Unary −

Figure 4: The new definition of eval_exp

binary operator: given an environment E (mapping each variable to a value and a machine type),
two expressions f1 and f2 and a binary operator op ∈ {+,−,×, /}, the expression f1 op f2 may
evaluate to (v1 op v2) · (1 + δ) in machine precision m1tm2 if the following conditions are satisfied:

– given the same environment E, f1 evaluates to value v1 in machine precision m1;

– and similarly for f2, but in the case of a division we should have v2 6= 0;

– |δ| is less than the machine epsilon of the new machine precision m1 tm2.

As mentioned before, the machine type of f1 op f2 is the highest precision among m1 and m2, i.e.
m1 tm2. The other inference rules can be read similarly.

3.4 Generalizing variable bindings

Variable bindings are also updated: they now specify the machine type used for each bound variable.
Then, every function and theorem presented in the next sections will be lifted to a command-based
version, ultimately relying on its expression-based counterpart. The extension is mostly technical,
I will not detail it in the next sections.

3.5 Typing

The mixed-precision error checker requires to know the maximal roundoff error that can be created
by each expression. This roundoff error is bounded by the machine epsilon, itself depending on the
machine type. Thus, we need to know for each expression, its corresponding machine type. To that
end, I implemented a new typing validation phase in the certificate checker, creating a map from
expressions to machine types, and checking that this map is correct. The current version of this
typing validation follows the same structure as the interval and error validation files: first, checking
functions are defined and check that a given type map from expressions to machine types is valid.
Second, soundness theorems are proved: they state that if an expression e and typing map Γ are
validated, and if e evaluates to a floating-point v in machine precision m (i.e. e, E ⇓ v, m), then
the type of e should be m (i.e. Γ(e) = m).

In the current version, I also defined a function (in Coq and HOL4) computing the type of each
expression, given the type of each variable. No explicit typing map is currently stored during Daisy’s
execution, but it would be more efficient to compute it during the analysis, store this typing map in
the certificate and check it. Currently, the machine type of each variable is given by the certificate
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using a partial map. An example is given in figure (3b): we can see that the initial variable a
and variable five have machine precision M64, but that variable three has machine precision M128
corresponding to Scala’s DoubleDouble type.

This part of the generalization has been the most difficult one. Starting to design a new validation
phase (similar to both the interval and error validation phases) did not seem to be too difficult at
first, as I was starting to feel sufficiently at ease with Coq. However, my first design involved a
function computing the typing map directly. I then wanted to prove that the computed typing
map was valid. This entailed reasoning on types of subexpressions, and it turned out to be too
complicated to prove. I spent a few weeks trying to sidestep this difficulty, without success: when
the typing function was sound, I was unable to prove the soundness of the error validation and
conversely when the properties needed in the error validation proofs where met by the typing
function, I was unable to prove its soundness. Finally, the solution was to use a structure similar
to the range and error validation phases, with a checker function, that does not try to compute a
typing map, but only checks if this typing map is valid.

3.6 Generalizing the interval validation

The interval validation, checking that the real-valued ranges of each expression are sound, was
quite easy to port. The ranges are specified in certificate using a map. An excerpt of this map is
shown in Fig. (3c). This map associates expressions to pairs of intervals and roundoff errors. As
mentioned in Section 2.4, the boolean equality between expressions is defined in Coq by a function
called expEqBool. The interval checker will only use the intervals given by the map, and proceeds
recursively on the expression it received.

The extension of the interval checker consists in adding the case of the Downcast. By definition,
this analysis expresses real-valued computations, so checking the range of an expression Downcast
m f consists in checking that the range found for Downcast m f and f are the same, and recursively
checking the ranges for f.

The proof of soundness is done by induction on the expressions. I had to prove the new case of
Downcast, but the rest of the proof cases were mostly unchanged.

3.7 Generalizing the error validation

The error checker generalization was more involved: every function and result is about roundoff
errors, and had to be updated to use the good machine epsilon, depending on the machine type of
each expression. The function checking the error bounds for expressions is changed in two ways:

– The checking function now takes one more argument, a type map mapping every expression
to a machine type.

– The checking function proceeds by recursion on a given expression. Compared to the uniform-
precision formalization, the expression type has one more constructor being Downcast. The
implementation of this new case is described in what follows. We start by stating a theorem,
that will be used to check the case of Downcast. This theorem links the error bounds of an
expression e with the Downcast of this expression.

Theorem 1. Assuming that:

eR, E1 ⇓ nR, M0 e, E2 ⇓ nF , m (Downcast m’ (Var 1)), E2[1 7→ (nF ,m)] ⇓ rF , m′

The following bound holds: |nR − rF | ≤ |nR − nF |+ |nF | ·meps(m′).

15



The last assumption of the theorem cannot be as simple as (Downcast m’ e), E2 ⇓ rF , m′: by
non-determinism of ⇓, it would not be possible to relate this hypothesis with the evaluation of e in
floating-point. Thus, I followed the solution used in similar cases in the uniform-precision certificate
checker, storing the result of the evaluation of e into a variable.

The proof of this theorem has been formalized in Coq (in 18 lines) and HOL4 (in 14 lines). A
paper proof is presented in appendix A.

Now, we can state the condition that will be used in the error checker. Suppose we have an
expression f = Downcast m’ e. We also suppose that according to the certificate, analysisResult
e = ([le, he], erre). This means that the real-valued expression e is contained in the interval
[le;he], and that e evaluated in floating-point arithmetic is contained in [le − erre;he + erre]. If
analysisResult f = ([lf; hf], errf), then the condition that is checked is:

erre+ max(|le− erre|, |he+ erre|) ·meps(m′) ≤ errf

This bound is really similar to what was stated in the theorem before. Moreover, this condition
looks reasonable, because the soundness theorem is still provable. As described in the last section,
the soundness theorem of the error validation claims that when both checker function return true,
then the error found is sound. This theorem is proved by induction on the expressions. In the case
of Downcast, we can now see why it holds. We know that:

– |nR− nF | ≤ erre (by induction hypothesis);

– nF ∈ [le − erre, he + erre], so that |nF | ≤ max(|le− erre|, |he+ erre|) (using the interval
validation and the bound of the previous point).

– erre + max(|le− erre|, |he+ erre|) ·meps(m′) ≤ errf (using the fact that the error checker
returns true)

Thus, we can conclude that |nR− rF | ≤ errf .

3.8 Final checking function

The last part of a certificate is a theorem stating that the certificate checker validates the defined
certificate. It takes as argument the final_command, which represents the whole analyzed function,
the analysis result absenv_sine, the precondition of the function thePrecondition_sine and the
type map for the variables defVars_sine. One example is given in Fig. (3d). The only part of
the certificate not presented in Fig. (3) is the precondition which maps parameter variables of the
function (in our case, a), to constraints on these variables (here, a ∈ [−1; 1]). If a certificate is
validated, then we know by the soundness proofs done before that the analysis performed was
sound.

3.9 Implementation details

The formalization of mixed-precision certificate-checking is now finished, although some optimiza-
tions could be implemented. I also modified the certificate generator in Daisy to handle mixed-
precision certificate generation. One of the difficulties in this work was to understand each proof
and function, as the formalization starts to be quite big: when I arrived, the Coq formalization took
roughly 5000 lines of code, and roughly 6000 lines of code for the HOL4 formalization. Another was
to use theorem provers: I knew a bit the Coq proof assistant, but I discovered many of its features
and subtleties during my internship. I had no previous knowledge of HOL4, and learning to use a
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new theorem prover always takes some time for me. Finally, the difficult point of the generalization
in itself was to introduce the typing validation, and get a correct and usable formalization of this
typing. As of mid-May 2017, the extension of the formalization to mixed-precision takes 6500 lines
of code in Coq and 7100 lines in HOL4.

The formalization is still limited for now: interval arithmetic is the only supported format,
but Daisy is capable of analyzing programs using affine arithmetic as well. Another issue is that
currently, the certificate checking has a computational cost similar to performing the analysis.

4 Formalization of affine arithmetic

After the formalization of mixed-precision, interval-based certificate checking, we decided to start
formalizing affine-arithmetic [20]. This would allow more precise analyses to be also verified, because
affine arithmetic is able to track relationships between variables. Currently, the formalization of
affine arithmetic consists in:

– a definition of what an affine form is;

– a definition of the concretization function γ mentioned in section 2.3;

– a function computing the addition of two affine forms;

– a function computing the multiplication of two affine forms;

– proofs that these functions are sound, as defined in section 2.3.

For now, the formalization is only written in Coq, although the port to HOL4 should not involve
any issues. The formalization is also not yet linked with the certificate checker.

I started by defining in Coq what an affine form is. An affine form is encoded as a list of co-
efficients, starting by the constant term. The noise terms are each represented by an index and a
coefficient (corresponding to the i and xi in the definitions of the affine forms above). For example,
the affine form 5 + 3ε2 is written Noise_t 2 (3/1) (Const_t 5). The current development im-
plicitly assumes that the noise terms are sorted by decreasing index, and it maintains this property
through the functions I defined. This index property has not been explicitly defined yet, but it pos-
sible to define normalized affine forms, where each noise coefficient is non-zero (or even positive),
and where the indices of the noise terms are sorted.

To encode the concretization function, we need to enforce that the n-tuples or the map used to
evaluate an affine form into a real number has elements between -1 and 1 only. In Coq, I used a
subset type that I called bounded_values. It consists of a rational q between -1 and 1, and a proof
that q is between -1 and 1.

The concretization function then takes an affine form â = a0 +
∑n

i=1 aiεi, a rational v and a
partial map M from indices to bounded_values. It is defined as follows: v is in the concretization
of â when v = eval(â,M), with eval(â,M) == ao +

∑n
i=1 aiM [i]. That is, v is a value represented

by â if the evaluation of â using the noise terms of M is v.
Defining the addition of two affine forms uses an approach really similar to the merging of two

sorted lists (as we want to keep the indices of the new affine form in decreasing order). However, I
encountered some difficulties, because Coq was not able to infer that the definition of the addition
of affine forms terminates. By default, Coq only accepts definition of functions that terminate
according to its heuristics. Every recursive function that is defined in Coq should call itself back
with a decreasing parameter. For example, if the recursive function is manipulating a list, Coq will
accept the definition only if the function progresses in the list during its recursive call. To continue

17



Tool Daisy Fluctuat FPTaylor Gappa
Automation Full Full Full Partial

Formal verification Certificates in
Coq/HOL4 No Certificates in

HOL Light
Outputs proofs

in Coq
Numerical domain Intervals Zonotopes N/A Intervals
Transcendental

functions No No Yes Yes

Mixed-precision Yes Yes No No

Input language Scala, using an
abstract class Subset of C Custom Custom

Variable bindings Yes Yes No (inlining) Yes
Control-flow

support No Yes, divergence
in option No No

Overflow/underflow
support

Partial
underflow
support

Yes Subnormals Subnormals

Table 1: Summary of different frameworks

with lists, when merging two sorted lists l1 and l2, the merging function may recurse with the tail
of l1 and l2, or l1 and the tail of l2, or the tail of both l1 and l2. This merging function terminates,
but Coq is unable to infer that automatically, because only one out of two arguments is decreasing
(and currently Coq cannot infer by itself that the pair (l1, l2) is a decreasing parameter). The same
problem was happening with the addition of affine forms. I experimented with different approaches
to prove the termination. In the end I chose to use the Function module. In that case, I wrote the
function plus_aff I wanted, and I defined a termination parameter. Then, the module generates
proof obligations the user should fulfill to get a well-defined function. These proof obligations
consisted in proving that each recursive call of the function decreases the termination parameter.
One issue I had with this approach is that the Function module was annotating the function a lot.
This was an issue in the proof of soundness, because the unfolding of a computation plus_aff was
really difficult. Later, I discovered that during proofs, it was possible to remove the annotations
created by the Function module. Then, I was able to prove the soundness of the defined addition
using functional induction: this simplified my proofs a lot.

5 Related work

Static analyzers I am not aware of any other formal development supporting mixed-precision
floating-point static analysis. The following tools are compared with Daisy in Table 1.

Fluctuat [7] is a state-of-the-art static analyzer by abstract interpretation. It supports advanced
analyses using a combination of domains, one of them being affine arithmetic. On the contrary to
the other tools, it has not been formally verified. It is included to see what functionalities are still
missing in the current formal developments.

FPTaylor [19] encodes the error analysis as a global optimization problem, and then solves
approximately this problem. It usually finds tighter bounds than another fully automatic analyzers,
but the analysis time is longer [6].

Gappa [2] is rather a high-level proof assistant than a static analyzer. It can prove (with the
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help of the user) precise results. It can also be used as a tactic inside Coq to solve simple goals.

Formal verification of numerical abstract domains Concerning formal verification of numer-
ical abstract domains, a lot of work has been presented in the last few years. The closest to what we
want to achieve is the formalization of some operations of affine arithmetic in PVS [15]. However,
no Coq or HOL4 formalization of affine arithmetic exist, and [15] does not supports inversion of
affine forms, and other functions defined on the zonotope abstract domain [11, 12]. The VPL library
[8] provides a library for manipulating convex polyehdra. It is implemented in OCaml, but a Coq
fronted is able to check the soundness of the operations performed. In [14], abstract domains such
as intervals, and linear congruences are formalized. Recently, the Octagon abstract domain has also
been formalized in Coq [13].

6 Conclusion

Daisy is a tool aiming at easily designing numerical programs having no precision nor performance
issue due to a misunderstanding of floating-point arithmetic by the end-user. I implemented sup-
port of formally-verified certificate-checking for mixed-precision arithmetic, in the case of interval
arithmetic based analysis. I also started including support for the formalization of affine arithmetic
based analysis.

During my working time, I spent some time on other tasks.

– The lab interviewed 14 candidates for faculty jobs. This was a good opportunity to attend
interesting talks ranging over a lot of different topics in computer science.

– I attended reading groups in programming languages and verification.

– I took a German class offered by the institute.

– I helped organize the Girl’s Day event, which is a national event in Germany aiming at
presenting to high-school girls domains where they are underrepresented3. In our case, our
goal was to show them what research in computer science is. To this end, we prepared
some activities where the pupils would discover and experiment with new concepts related
to computer science. In particular, I helped to adapt an activity taken from the computer
science field guide4, introducing the concept of finite-state automaton.

– My supervisor also taught a static analysis course at the Master’s level. One of the parts of
this course was about abstract interpretation. I helped design and I conducted a practical
session on a static analyzer called Interproc5. The goal of this session was to show to the
students that the analyses they have seen during the lecture can be implemented, and to
discover a few key features of static analysis by abstract interpretation.
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A Proof of theorem 1

This is the proof of theorem 1, recalled below. This proof is also formalized in the certificate checker.

Theorem Assuming that:

eR, E1 ⇓ nR, M0 e, E2 ⇓ nF , m (Downcast m’ (Var 1)), E2[1 7→ (nF ,m)] ⇓ rF , m′

The following bound holds: |nR − rF | ≤ |nR − nF |+ |nF | ·meps(m′).

Proof.

|nR − rF | = |nR − nF + nF − rF |
≤ |nR − nF |+ |nF − rF |

Now, we only need to prove that |nF − rF | ≤ |nF | ·meps(m′). By definition of ⇓ (in Fig. (4)), we
know that (Downcast m’ (Var 1)), E2[1 7→ (nF ,m)] ⇓ rF , m′ implies the following:

– mx w m′;

– |δ| ≤ meps(m′);

– (Var 1), E2[1 7→ (nF ,m)] ⇓ x, mx with x · (1 + δ) = rF .

The last point can be further simplified to get that (Var 1), E2[1 7→ (nF ,m)] ⇓ nF , m, with
nF · (1 + δ) = rF . Thus, |nF − rF | = |−nF · δ| = |nF · δ| ≤ |nF | ·meps(m′) (as meps(m′) > 0). By
combining the results, we effectively get that:

|nR − rF | ≤ |nR − nF |+ |nF | ·meps(m′)

B Inversion of an affine form

This section describes how one can compute the inverse of an affine form x̂, when γ(x̂) contains only
positive numbers. This approach is described by Stol and De Figueiredo in [20], but I wanted to write
down the geometrical reasoning involved. In our case, we have an affine form x̂, and γ(x̂) = [a; b]
with 0 < a < b. The goal is to compute an approximation of 1/x̂. Stol and De Figueiredo [20] chose
to search for an approximation of the form αx̂+ β + δεn+1, where εn+1 is a fresh noise term.

We will use figure 5 as an example. In that case, we have a = 2 and b = 7, so that γ(x̂) = [2; 7].
We can see that the parallelogram defined by points A, B, C and D is a valid over-approximation of
1/x, for 2 ≤ x ≤ 7 (visually, the plot of the inverse function is contained by the parallelogram). Let
us see how this parallelogram has been constructed, and how to express this parallelogram into an
affine form. It starts with the construction of (D1), which is tangent to y = 1/x at x = b = 7. Thus,
the equation of (D1) is y = −1

b2
(x−b)+ 1

b . Then, by definition of a parallelogram, (D2) will be parallel
to (D1). We just need to translate (D1) sufficiently upwards so that the point (a, 1/a) ∈ (D2). Then,
(D2) is uniquely characterized, and its equation is y = −1

b2
(x − a) + 1

a . From these two lines, we
can easily define the parallelogram defined by A, B, C and D. The translation into an affine form
itself is simple: the average value represented by the dashed grey segment can be expressed as
αx̂+ β. The deviation from this average is handled by the new noise terms. In particular, we can
notice that dashed grey line lies is equidistant from (D1) and (D2), so that the equation of this
line is: y = −1

b2
(x − a+b

2 ) + 1
2a + 1

2b . We can deduce that α = −1
b2
, β = 1

2( 1a + 1
b − α(a + b)), and

δ = 1
2(α(b− a) + 1

a −
1
b ).
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Figure 5: Example of inversion of an affine form

Remark We could have chosen to start by constructing the tangent to y = 1/x at x = a, and
continue to build the parallelogram this way. While this approach is still valid, it gives worse usually
worse results: the created parallelogram would probably contain points having ordinate y = 0.

Comparison with intervals Let us compare the size of each representation. Concerning the
inverse of an interval, the area used is I = (b− a) · (a−1 − b−1). Concerning the inverse of an affine
form, the area used is A = (b− a) · 2δ. Thus, the ratio is

R =
A

I
=
α(b− a) + a−1 − b−1

a−1 − b−1
= 1 + αab = 1− a

b

As 0 < a < b, R < 1, the approximation using affine forms is strictly better.
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