
Static Analysis of Python Programs?

Raphaël Monat[0000−0001−8487−0326]

LIP6, Sorbonne Université
raphael.monat@lip6.fr

Abstract. Python is an increasingly popular dynamic programming
language, which is particularly used in the scientific community, and
well-known for its powerful and permissive high-level syntax. The goal
of this PhD is to develop static analyses for Python, i.e. to detect auto-
matically uncaught exceptions in programs without running them. The
current focus is to detect type and attribute errors using a type analysis.

Keywords: Formal Methods · Static Analysis · Abstract Interpretation
· Python · Dynamic Programming Language

1 Introduction

Python is a popular programming language: it ranks second on StackOverflow
and third on GitHub1. Major software projects written in Python include the
Django web framework, the SageMath computer algebra system and the Ten-
sorFlow machine-learning framework. Python is an object-oriented, interpreted,
dynamic programming language, meaning for example that variables are not
statically typechecked and metaprogramming features such as introspection are
widely used. In particular, errors such as undeclared variables and type incom-
patibilities are detected at runtime by the interpreter and raised as exceptions,
which can be caught by the program itself.

Our goal is to develop static analyses of Python programs through the frame-
work of Abstract Interpretation[7]: we want to write analyzers that read the
source code of a Python program and automatically report potential uncaught
exceptions to the user. We also want our analyzers to be sound: if no exception is
found in a program, then the program is guaranteed to not have uncaught excep-
tions. Mature static analyzers for statically typed programming languages such
as C and Java are common (e.g. Astrée[3], Frama-C[15] and Infer[6]), but only
a few analyses exist for dynamically typed languages: some exist for JavaScript
[11,14,16] and less for Python [9,12]. Analyzing Python programs present new
challenges: the semantics of Python is not well-known and not clearly defined, as
it is only specified by the reference interpreter called CPython. The semantics is

? This work is supported by the European Research Council under Consolidator Grant
Agreement 681393 – MOPSA.

1 https://insights.stackoverflow.com/survey/2019#technology-_

-programming-scripting-and-markup-languages https://githut.info/

https://orcid.org/0000-0001-8487-0326 
https://insights.stackoverflow.com/survey/2019#technology-_-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2019#technology-_-programming-scripting-and-markup-languages
https://githut.info/


2 R. Monat

also much more complex: for example, the addition operator has 7 different re-
turn cases depending on the runtime types of the addition parameters, and may
call up to 7 different builtin functions. The object-orientation of Python entails
a lot of user-defined function calls in a program, so our analyses need to scale to
handle analysis of thousands of function calls. The language is by design quite
permissive: variables may be declared only in some parts of the control-flow of
a program, and they do not have to be of a constant type.

Another goal of this PhD is to implement and validate theoretically designed
analyses within a static analysis framework called MOPSA. The goal of MOPSA
is to make the implementation of new static analyses easier, through the modu-
larity of abstract domains.

2 Current work

Our current work aims at developing a type analysis for Python programs, in
order to detect uncaught type errors. For each program point and each variable,
our analysis infers the set of types matching each potential value of the variable.
This is already a challenging task, as we need to take into account object mu-
tability, two notions of types (nominal typing, corresponding to the class from
which an object is instantiated, and duck typing, based on attributes) – as well as
the complex semantics of the language and the size of the standard library. Our
analysis has the following characteristics: it supports aliasing, standard python
containers and is flow-sensitive. It also performs polymorphic type inference and
partially modular interprocedural analysis. We now describe these features.

class A:
def __init__(self):

self.val = 0
def update(self , x):

self.val = x

x = A()
c = x.val
y = x
y.update(’a’)
z = x.val

Fig. 1. Aliasing example

Aliasing. We separate our analysis into two parts:
a heap abstraction[2] maps variables to abstract ad-
dresses they may point to. This heap abstraction is
independent from other parts of the analysis and can
be changed to achieve different precision levels. The
second part is a type domain, mapping abstract ad-
dresses to types, where the type consists in the class
from which the object is instantiated as well as the at-
tributes that may have been added to this object. This
separation lets us analyze aliasing and object muta-
tions: we are able to infer in Fig. 1 that the update of
y updates x as well.

Python containers. We have added a smashing abstraction[4] for Python
containers such as lists. In the case of lists, this smashing means that its contents
is summarized into one weak variable for each allocation site. This abstraction is
implemented independently from the basic analysis in MOPSA: it could be used
as is in other analyses (such as a value analysis). This smashing abstraction could
also be swapped with another abstraction (such as expansion), without having
to modify the type analysis.



Static Analysis of Python Programs 3

def dint(x):
if isinstance(x, int): return x*2
else: raise TypeError

try: z2 = f(’a’)
except TypeError: z2 = None

Fig. 2. Control-flow example

Flow-sensitivity. Our analysis is flow-
sensitive: variables may have different
types in different branches of a condi-
tional. Moreover, our domain is able to
take into account calls to isinstance

or hasattr filtering the possible types
of a branch. In the example of Fig. 2,
we know that the return statement is unreachable when the parameter is a
string. In addition, our analysis tracks raised exceptions precisely, meaning that
we know that z2 = None at the end, as a TypeError is raised during f(’a’).

if isinstance(p, str):
r = ’/’

else:
r = b’/’

Fig. 3. Example inspired
from posixpath. get sep

Polymorphism. In some cases, a variable may have
different types depending on the control-flow, and may
be related to another. For example, in Fig. 3, assuming
that the variable p is an instance of bytes or str, the
variables p and r have the same type, which is the
set S = {bytes, str}. Our analysis is able to perform
a relational analysis and infer that variables p and r

have the same type α ∈ S.

Partially Modular Analysis. Due to the semantics calling many builtin func-
tions and the object-orientation of Python, a lot of function and method calls
need to be analyzed even in small programs. As the inlining of function calls was
too costly, we developed a cache mechanism reusing the results of previous func-
tion analyses provided the abstract environment has not changed. For example,
in the benchmark bm chaos.py (see Table 1), the analysis inlines around 5400
calls to user-defined functions. Using the cache, this is reduced to 1700 calls.
With this cache reducing the context-sensitivity and with the polymorphism,
we can also establish relations between input and output variables: a function
inspired from Fig. 3 taking as argument p and returning r has type α→ α, with
α ∈ {str, bytes}.

Sound Analysis. We aim at providing a sound analysis, although we do not
take support neither metaprogramming nor dynamic code execution through
the “eval” statement yet. As of today, we have not found programs where the
soundness entailed a big loss in the precision of the analysis. We also believe
that specialized sound analyses may help keep sufficient precision in the other
cases. An example is the analysis of JavaScript’s evals is presented in [13].

Experimental results. We have implemented our analysis into MOPSA. The
type analysis consists in 2500 lines of OCaml code, the container abstractions
consists in 2100 lines of OCaml, and there are 5500 lines of OCaml code defining
the semantics of Python. We currently support more than 200 functions from
the standard library. We show the results of our analysis in Table 1, on bench-
marks used by the standard Python interpreter. We focused on 7 benchmarks



4 R. Monat

out of 44, which were chosen for their low number of external dependencies. We
found one TypeError in bm chaos.py2, which was never reached in the actual
test, but could be triggered by instanciating a class using non-default arguments.
This error was also detected by Pytype. The last benchmark bm hexiom.py has
a number of false alarms mainly due to our analysis being unable to distinguish
empty lists from non-empty ones, meaning that we cannot be sure that vari-
ables created during iterations over lists are actually defined. We have compared
our analyzer with Typpete[12], Pytype[1] and a tool developed by Fritz and
Hage[8]: we believe we are uniquely taking into account mutability, control-flow
and dynamic attribute addition when analyzing programs.

Name LOC Analysis time # Alarms # False Alarms

bm fannkuch.py 59 0.07s 0 0
bm float.py 63 0.06s 0 0

bm spectral norm.py 74 0.33s 0 1
bm nbody.py 157 1.5s 0 1
bm chaos.py 324 5.6s 1 0

bm unpack sequence.py 458 3.1s 0 0
bm hexiom.py 674 2m58s 0 52

Table 1. Analysis of official Python benchmarks3

Research Approach. Our approach is the following: once we have a kind
of analysis in mind, we search for bugs or pieces of real-world code that would
benefit from it. We then design the analysis, check that it is sound and implement
it. We benchmark it, and try to improve performance and precision issues. For
example, we implemented the partially modular analysis after the type analysis
was found to be too slow, and the polymorphism was added to gain precision.

3 Related Work

Semantics. We are currently using a slightly upgraded concrete semantics of
[9]. Other semantics for Python have been defined in [10,17,18]. Contrary to
Python, the JavaScript language is defined through a standard, and different
semantics exists, including formal ones[5].

Dynamic Analysis. Tools such as PyAnnotate4 and MonkeyType5 run pro-
grams to collect the types during execution. While this approach helps during
manual program annotation, the types are not sound, as not all branches are
explored at runtime.

Gradual Typing. A compromise between statically and dynamically typed
languages is gradual typing, where the user annotates parts of the program,

2 https://github.com/python/pyperformance/issues/57
3 https://github.com/python/pyperformance/
4 https://github.com/dropbox/pyannotate
5 https://github.com/Instagram/MonkeyType

https://github.com/python/pyperformance/issues/57
https://github.com/python/pyperformance/
https://github.com/dropbox/pyannotate
https://github.com/Instagram/MonkeyType


Static Analysis of Python Programs 5

which can then be typechecked. Other parts have an unknown, “top” type from
which any static type can be cast to and from. If a program gradually typechecks,
the only type errors that can occur at runtime are casts from variables having
type “top”. Gradual typecheckers for Python include Mypy6 and Pyre7. Both
tools however restrict the input language, as a variable should have only one
type at runtime. By constrast, our type analysis is more permissive: our goal is
not to restrict the dynamic typing features of Python, but to find uncaught type
exceptions. Mypy’s type annotations have inspired a new standard for optional
type annotations in Python, defined in the PEP 484 8.

Static Analysis. Three other tools perform a static type analysis of Python
programs: Typpete [12] encodes the typing problem into a MaxSMT instance and
lets Z3 solve it; Pytype [1] performs a dataflow analysis which is not formally
described and a tool written by Fritz and Hage [8] performs another dataflow
analysis. Both Typpete and Pytype provide PEP484-compliant type annotations
upon successful typing, while the last tool displays the type of each variable at
each program point. A value analysis by abstract interpretation is presented in
[9]: it is able to infer numerical properties, while our analysis is able to infer
polymorphic types.

4 Future work

Target Programs. Our short-term goal is to analyze open-source Python util-
ities of moderate size (less than 20,000 LOC), as a first step to analyzing general
software. In order to analyze these utilities, we plan to research on:

Modular Interprocedural Analysis. Due to the complex semantics of Python,
it seems difficult to analyze functions without any context. We would like to de-
velop a summary-based analysis which is able to infer precisely which part of
the context is needed to analyze a function. This would improve the reusability
of the current cache we have and the overall performances. This analysis would
also be able to yield a general type for functions that have one.

Library Analysis. Python uses a lot of libraries and has a vast standard
library. In order to scale to bigger Python programs, we plan to design analyses
able to infer information on library calls, or able to generate stubs automatically.

Multilingual Analysis. As Python has a lot of libraries written in C, having
a multilingual analysis capable of analyzing both the Python program and the
C library calls would help analyze projects more precisely.

6 http://mypy-lang.org/
7 https://github.com/facebook/pyre-check
8 https://www.python.org/dev/peps/pep-0484/

http://mypy-lang.org/
https://github.com/facebook/pyre-check
https://www.python.org/dev/peps/pep-0484/


6 R. Monat

Acknowledgments. This is joint work with Abdelraouf Ouadjaout and my
PhD advisor, Antoine Miné.

References

1. Pytype. https://github.com/google/pytype (2018)
2. Balakrishnan, Reps: Recency-abstraction for heap-allocated storage. In: SAS Pro-

ceedings (2006). https://doi.org/10.1007/11823230 15
3. Bertrane, Cousot, Cousot, Feret, Mauborgne, Miné, Rival: Static analysis and ver-

ification of aerospace software by abstract interpretation. Foundations and Trends
in Programming Languages (2015). https://doi.org/10.1561/2500000002

4. Blanchet, Cousot, Cousot, Feret, Mauborgne, Miné, Monniaux, Rival: Design
and implementation of a special-purpose static program analyzer for safety-
critical real-time embedded software. In: The Essence of Computation, Com-
plexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones (2002).
https://doi.org/10.1007/3-540-36377-7 5

5. Bodin, Charguéraud, Filaretti, Gardner, Maffeis, Naudziuniene, Schmitt, Smith: A
trusted mechanised javascript specification. In: POPL. pp. 87–100. ACM (2014).
https://doi.org/10.1145/2535838.2535876

6. Calcagno, Distefano, Dubreil, Gabi, Hooimeijer, Luca, O’Hearn, Papakonstanti-
nou, Purbrick, Rodriguez: Moving fast with software verification. In: NFM 2015
Proceedings. Springer (2015). https://doi.org/10.1007/978-3-319-17524-9 1

7. Cousot, Cousot: Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: POPL 1977. pp.
238–252. ACM (1977). https://doi.org/10.1145/512950.512973

8. Fritz, Hage: Cost versus precision for approximate typing for python. In: PEPM
2017 Proceedings (2017). https://doi.org/10.1145/3018882.3018888

9. Fromherz, Ouadjaout, Miné: Static value analysis of python programs by ab-
stract interpretation. In: NFM 2018 Proceedings. vol. 10811, pp. 185–202 (2018).
https://doi.org/10.1007/978.3.319.77935.5.14

10. Guth, D.: A formal semantics of python 3.3 (2013)
11. Hackett, Guo: Fast and precise hybrid type inference for javascript. In: PLDI. pp.

239–250. ACM (2012). https://doi.org/10.1145/2254064.2254094
12. Hassan, Urban, Eilers, Müller: Maxsmt-based type inference for python 3. In: CAV

(2) (2018). https://doi.org/10.1007/978-3-319-96142-2 2
13. Jensen, Jonsson, Møller: Remedying the eval that men do. In: ISSTA 2012. pp.

34–44. ACM (2012). https://doi.org/10.1145/2338965.2336758
14. Jensen, Møller, Thiemann: Type analysis for javascript. In: SAS. vol. 5673, pp.

238–255. Springer (2009). https://doi.org/10.1145/2535838.2535876
15. Kirchner, Kosmatov, Prevosto, Signoles, Yakobowski: Frama-c: A soft-

ware analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015).
https://doi.org/10.1007/s00165-014-0326-7

16. Logozzo, Venter: RATA: rapid atomic type analysis by abstract interpre-
tation - application to javascript optimization. In: CC. Springer (2010).
https://doi.org/10.1007/978-3-642-11970-5 5

17. Politz, Martinez, Milano, Warren, Patterson, Li, Chitipothu, Krishna-
murthi: Python: the full monty. In: Proceedings of OOPSLA (2013).
https://doi.org/10.1145/2509136.2509536

18. Smeding, G.J.: An executable operational semantics for python. Universiteit
Utrecht (2009)

https://github.com/google/pytype
https://doi.org/10.1007/11823230_15
https://doi.org/10.1561/2500000002
https://doi.org/10.1007/3-540-36377-7_5
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/3018882.3018888
https://doi.org/10.1007/978.3.319.77935.5.14
https://doi.org/10.1145/2254064.2254094
https://doi.org/10.1007/978-3-319-96142-2_2
https://doi.org/10.1145/2338965.2336758
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-642-11970-5_5
https://doi.org/10.1145/2509136.2509536

	Static Analysis of Python Programs

