SEMANTICS & STATIC ANALYSIS OF PYTHON PROGRAMS

Raphaél Monat, Abdelraout Ouadjaout, Antoine Miné

raphael .monat@lip6. fr

What is Python?

Python is an object-oriented, inter- Runtime Errors

preted, dynamic programming lan- y = int(input())

guage. It features a powerful and per- try:

missive, high-level syntax; and ranks x =1/y

2nd in popularity on GitHub. except DivisionByZeroError:

print ("errors are catchable™)

LIP6, Sorbonne Université

Specificities of Python

Dynamic Typing
Variables may h

1f *: = 3

Z
else: z = "a

ave different type at

different program locations:

Introspection

Semantics? Variable Scope

a = 2
What? A mathematical description of def £():
the meaning of Python operators. z = a
a = 1+z
Why? o relate static analyses with £0)

the actual program behavior.

def dint(x):

return x*2
else: raise

£ raises an UnboundLocalError z = f(’a’)

Static Type Analysis

Goal
— Detect potential run-time errors without executing programs.

— Automatic analysis: no expert knowledge needed.

—Sound analysis: no error found means no runtime error.
We use the Abstract Interpretation framework[1].

Motivation

—Static analyses are widespread for statically-typed programming languages, and
successfully used in critical software certification.

—Dynamic programming languages leave less information in the syntax.
—Thus, semantic static analyses would be most valuable in this setting.
Implementation & Benchmarks

—Implementation into MOPSA[5], whose goal is to provide modular analyses.
—Type analysis: 2500 lines &.d.

— Container abstraction: 2100 lines =4.

—Python’s Semantics: 5500 lines «.4.

— We are able to analyze some offical Python benchmarks[6]!

Future work
—Stable, easily maintainable and check- | —Summary-based function analysis,
able concrete semantics. where the summaries can be reused in

—Handle libraries through automatic different contexts.
stub generation and multilingual anal- - Analyze real-world programs and

ysis (most libraries are in C). frameworks (Django, SageMath, ...)

Semantics Example: Computing e; + e2

Python’s efficient and
concise syntax entails the

semantics to be as ac-
commodating as possi- has_field(ay, _add_)? O ; ?za&zsjcfri)zl(i(c)bzé_{;paed(%_)z?
ble rather than raise ex- ! g

ceptions, creating many Yes Yes

cases for operators as has_field(as, __radd) R
simple the addition. && type(ar) < type(as)? [

Our current semantics is No

an input-output seman- N
tics which is defined on %= @lars—add_ona;a; °(a3 == NotImplemented?

paper, and whose ab- Yes
stract version is imple-
mented in our static an- | % == Notimplenented:
alyzer, updated from [2].

a; = eval e;; as = eval e,

P
<€

MOPSA Project. http://mopsa.lip6. fr.

1 r 1 r 1 r 1 r 1 r 1 r 1
J [J A Jd A J A J A J | J

class Path:

def fspath__(self):

p = "/dev" if random() else Path() @ .

def fspath(p):

Combined with dynamic typing,
control-flow can depend on the types:

1f isinstance(x, 1nt):

TypeError

if isinstance(p, str): @

return p

elif hasattr(p, "__fspath__"):
r = p.__fspath__(O ©
1f isinstance(r, str):

return r
else: raise

TypeError

else: raise TypeError

r = fspath(p) @

the

return 42

T DUNNO... /
DYNAMIC TYPING? I JUST TYPED
MHITEGRRCE? import ontigravity
/ COME JoN s | | THATS 1T (
T LEARNED ITLAST PROGRAMMING ... T ALSO SAMPLED
NIGHT! EVERYTHING IS FUN AGAIN! EVERYTHING IN THE
5 S0 SIMPLE ! ITS A WHOLE MEDICINE CABINET
! NEW WORLD FOR COMPARISON.
HELLO WORLD IS JUsST _ WP HERE! f
print "Hello, world!" BUT HOW ARE BUT T THINK THIS
YOU FLYING? 1S THE PYTHON.

Object Mutability

class A:
def __init__(s
self.val = 0
def update(sel
self.val = x

= AQ)

= x.val

= X
.update(’a’)
= x.val

Z = d

HF NS < N XM

’
p = {@strr @Path}

D — {@str}

TypeError V 7 = (@}

elf):

f, x):

@pugp - {__fspath__ — @, 0}

,
< p — {@path}/"r —> {@int}
\@Path = {_fSPﬂth_ = @int/ (Z)}

Name LOC Time (inlining) Time (fun. cache) # Alarms # False Alarms

fannkuch.py | 59 0.07s 0.07s 0 0
float.py 63 0.10s 0.06s 0 0
spectral n.py | 74 39s 0.33s 0 1
nbody.py | 157 2.6 1.5s 0 1
chaos.py 324 19s 5.9s 11[7] 0
unpack_seq.py 458 5.6s 5.4s 0 0
hexiom.py | 674 61.7m 2.2m 0 52

Uncovering the semantics

for x in 1:
l.remove (x)
print (1)

= list(range (10)) d = - ’a’

for 1 in d:
d.pop (1)

print (1)

Semantics Challenges

Checking the semantics is correct

— By writing tests and comparing the results with the interpreter;

— By checking that our analysis passes the interpreter’s unit tests.

Other approaches

Python Performance Benchmarks. https://github.com/python/pyperformance/tree/master/pyperformance/benchmarks.
Python Performance Benchmarks Bug Report. https://github.com/python/pyperformance/issues/57.

The top-right drawing is from XKCD (https://xkcd.com/353/), under licence CC-BY-NC 2.5.
* This work is supported by the European Research Council under Consolidator Grant Agreement 681393 - MOPSA.

}

dii+1+len(d)]="a’

By reading the documentation and the implementation.

Coql4], K framework]|3] are attractive tools (to extract a concrete
interpreter, or to be able to write proofs), but their use would be time-consuming.

Established by the European Commission

h

Cousot and Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints”. In: POPL 1977.1977. por: 10.1145/512950.512973.
Fromherz, Ouadjaout, and Miné. “Static Value Analysis of Python Programs by Abstract Interpretation”. In: NFM 2018 Proceedings. Vol. 10811. 2018, pp. 185-202. por1: 10.1007/978.3.319.77935.5. 14.
Grigore Rosu and Traian Florin Serbdnutd. “An Overview of the K Semantic Framework”. In: Journal of Logic and Algebraic Programming 79.6 (2010), pp. 397-434. por: 10.1016/j.jlap.2010.03.012.

The Coq Development Team. The Cog Proof Assistant, version 8.9.0. Jan. 2019. por: 10.5281/zenodo.2554024.

VERSITE

Q SORBONNE
S

KTEX TikZposter

raphael.monat@lip6.fr
raphael.monat@lip6.fr
https://rmonat.fr/mopsa-sif19/
https://github.com/python/pyperformance/issues/57
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978.3.319.77935.5.14
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.5281/zenodo.2554024
http://mopsa.lip6.fr
https://github.com/python/pyperformance/tree/master/pyperformance/benchmarks
https://github.com/python/pyperformance/issues/57
https://xkcd.com/353/

