
LATEX TikZposter

Semantics & Static Analysis of Python Programs?

Raphaël Monat, Abdelraouf Ouadjaout, Antoine Miné

raphael.monat@lip6.fr LIP6, Sorbonne Université

Semantics & Static Analysis of Python Programs?

Raphaël Monat, Abdelraouf Ouadjaout, Antoine Miné

raphael.monat@lip6.fr LIP6, Sorbonne Université

What is Python?

Python is an object-oriented, inter-
preted, dynamic programming lan-
guage. It features a powerful and per-
missive, high-level syntax; and ranks
2nd in popularity on GitHub.

Semantics?

What? A mathematical description of
the meaning of Python operators.

Why? To relate static analyses with
the actual program behavior.

Specificities of Python

Runtime Errors

y = int(input())
try:
x = 1 / y
except DivisionByZeroError:
print("errors are catchable")

Variable Scope

a = 2
def f():
z = a
a = 1+z
f()
f raises an UnboundLocalError

Dynamic Typing

Variables may have different type at
different program locations:
if *: z = 3
else: z = "a"

Introspection

Combined with dynamic typing, the
control-flow can depend on the types:
def dint(x):
if isinstance(x, int):
return x*2
else: raise TypeError
z = f(’a’)

Object Mutability

class A:
def __init__(self):
self.val = 0

def update(self, x):
self.val = x

x = A()
c = x.val
y = x
y.update(’a’)
z = x.val
z = ’a’

Static Type Analysis

class Path:
def __fspath__(self): return 42

p = "/dev" if random() else Path()

def fspath(p):
if isinstance(p, str):
return p

elif hasattr(p, "__fspath__"):
r = p.__fspath__()
if isinstance(r, str):
return r

else: raise TypeError
else: raise TypeError

r = fspath(p)

p 7→ {@str,@Path}

@Path 7→ {__ f spath__ 7→ @int, ∅}

p 7→ {@str}

p 7→ {@path}; r 7→ {@int}
@Path 7→ {__ f spath__ 7→ @int, ∅}

TypeError ∨ r 7→ {@str}

Name LOC Time (inlining) Time (fun. cache) # Alarms # False Alarms
fannkuch.py 59 0.07s 0.07s 0 0

float.py 63 0.10s 0.06s 0 0
spectral_n.py 74 3.9 s 0.33s 0 1

nbody.py 157 2.6s 1.5s 0 1
chaos.py 324 19s 5.9s 1 [7] 0

unpack_seq.py 458 5.6s 5.4s 0 0
hexiom.py 674 61.7m 2.2m 0 52

Goal

– Detect potential run-time errors without executing programs.
– Automatic analysis: no expert knowledge needed.
– Sound analysis: no error found means no runtime error.
We use the Abstract Interpretation framework[1].
Motivation

– Static analyses are widespread for statically-typed programming languages, and
successfully used in critical software certification.

– Dynamic programming languages leave less information in the syntax.
– Thus, semantic static analyses would be most valuable in this setting.
Implementation & Benchmarks

– Implementation into MOPSA[5], whose goal is to provide modular analyses.
– Type analysis: 2500 lines .
– Container abstraction: 2100 lines .
– Python’s Semantics: 5500 lines .
– We are able to analyze some offical Python benchmarks[6]!
Future work
– Stable, easily maintainable and check-

able concrete semantics.
– Handle libraries through automatic

stub generation and multilingual anal-
ysis (most libraries are in C).

– Summary-based function analysis,
where the summaries can be reused in
different contexts.

– Analyze real-world programs and
frameworks (Django, SageMath, ...)

Semantics Example: Computing e1 + e2

a1 = eval e1; a2 = eval e2

has_field(a1, __add__)?
No

Yes

has_field(a2, __radd__)
&& type(a1) < type(a2)?

Yes

No

a3 = call a1’s__add__ on a1, a2

a3 == NotImplemented?

No

Yes

Result is a3

has_field(a2, __radd__)
&& type(a1) , type(a2)?

Yes

No

a3 = call a2’s__radd__ on a1, a2

a3 == NotImplemented?

Yes

No

Type Error

Python’s efficient and
concise syntax entails the
semantics to be as ac-
commodating as possi-
ble rather than raise ex-
ceptions, creating many
cases for operators as
simple the addition.
Our current semantics is
an input-output seman-
tics which is defined on
paper, and whose ab-
stract version is imple-
mented in our static an-
alyzer, updated from [2].

Guess the result – My favorite Python game

[] and ’a’
127 is 127
128 is 128
"a" is "a"
"a,1" is "a,1"

l = list(range(10))
for x in l:
l.remove(x)
print(l)

d = {0: ’a’}
for i in d:
d.pop(i)
d[i+1+len(d)]=’a’
print(i)

Semantics Challenges

Uncovering the semantics By reading the documentation and the implementation.
Checking the semantics is correct

– By writing tests and comparing the results with the interpreter;
– By checking that our analysis passes the interpreter’s unit tests.
Other approaches Coq[4], K framework[3] are attractive tools (to extract a concrete
interpreter, or to be able to write proofs), but their use would be time-consuming.

[1] Cousot and Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints”. In: POPL 1977. 1977. doi: 10.1145/512950.512973.
[2] Fromherz, Ouadjaout, and Miné. “Static Value Analysis of Python Programs by Abstract Interpretation”. In: NFM 2018 Proceedings. Vol. 10811. 2018, pp. 185–202. doi: 10.1007/978.3.319.77935.5.14.
[3] Grigore Roşu and Traian Florin Şerbănuţă. “An Overview of the K Semantic Framework”. In: Journal of Logic and Algebraic Programming 79.6 (2010), pp. 397–434. doi: 10.1016/j.jlap.2010.03.012.
[4] The Coq Development Team. The Coq Proof Assistant, version 8.9.0. Jan. 2019. doi: 10.5281/zenodo.2554024.
[5] MOPSA Project. http://mopsa.lip6.fr.
[6] Python Performance Benchmarks. https://github.com/python/pyperformance/tree/master/pyperformance/benchmarks.
[7] Python Performance Benchmarks Bug Report. https://github.com/python/pyperformance/issues/57.

The top-right drawing is from XKCD (https://xkcd.com/353/), under licence CC-BY-NC 2.5.
? This work is supported by the European Research Council under Consolidator Grant Agreement 681393 – MOPSA.

raphael.monat@lip6.fr
raphael.monat@lip6.fr
https://rmonat.fr/mopsa-sif19/
https://github.com/python/pyperformance/issues/57
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978.3.319.77935.5.14
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.5281/zenodo.2554024
http://mopsa.lip6.fr
https://github.com/python/pyperformance/tree/master/pyperformance/benchmarks
https://github.com/python/pyperformance/issues/57
https://xkcd.com/353/

