
Semantics and Static Analysis of Python

Raphaël Monat, Abdelraouf Ouadjaout, Antoine Miné

2nd July 2019

https://rmonat.fr/mopsa-sif19/


Introduction



xkcd.com/353/
1

xkcd.com/353/


Python is a Dynamic Programming Language

It features:

I A concise and efficient syntax,

I Dynamic typing: types are only known at runtime,

I Introspection,

I Self-modification.

2



Python Example from the “os” Library

def fspath(p):

if isinstance(p, (str, bytes)):

return p

elif hasattr(p, "__fspath__"):

res = p.__fspath__()

if isinstance(res, (str, bytes)):

return res

else:

raise TypeError("...")

else:

raise TypeError("...")

Introspection!
Two notions of typing:

I Nominal, based on classes.

I Structural, based on
attributes.

Type of fspath?

α→ α, α ∈ {str , bytes} or an
object having a method
__fspath__ returning α.

3



Python Example from the “os” Library

def fspath(p):

if isinstance(p, (str, bytes)):

return p

elif hasattr(p, "__fspath__"):

res = p.__fspath__()

if isinstance(res, (str, bytes)):

return res

else:

raise TypeError("...")

else:

raise TypeError("...")

Introspection!

Two notions of typing:

I Nominal, based on classes.

I Structural, based on
attributes.

Type of fspath?

α→ α, α ∈ {str , bytes} or an
object having a method
__fspath__ returning α.

3



Python Example from the “os” Library

def fspath(p):

if isinstance(p, (str, bytes)):

return p

elif hasattr(p, "__fspath__"):

res = p.__fspath__()

if isinstance(res, (str, bytes)):

return res

else:

raise TypeError("...")

else:

raise TypeError("...")

Introspection!

Two notions of typing:

I Nominal, based on classes.

I Structural, based on
attributes.

Type of fspath?

α→ α, α ∈ {str , bytes} or an
object having a method
__fspath__ returning α.

3



Python Example from the “os” Library

def fspath(p):

if isinstance(p, (str, bytes)):

return p

elif hasattr(p, "__fspath__"):

res = p.__fspath__()

if isinstance(res, (str, bytes)):

return res

else:

raise TypeError("...")

else:

raise TypeError("...")

Introspection!

Two notions of typing:

I Nominal, based on classes.

I Structural, based on
attributes.

Type of fspath?

α→ α, α ∈ {str , bytes} or an
object having a method
__fspath__ returning α.

3



Python Example from the “os” Library

def fspath(p):

if isinstance(p, (str, bytes)):

return p

elif hasattr(p, "__fspath__"):

res = p.__fspath__()

if isinstance(res, (str, bytes)):

return res

else:

raise TypeError("...")

else:

raise TypeError("...")

Introspection!

Two notions of typing:

I Nominal, based on classes.

I Structural, based on
attributes.

Type of fspath?
α→ α, α ∈ {str , bytes} or an
object having a method
__fspath__ returning α.

3



Bugs are Everywhere!

4



Static Analysis by Abstract Interpretation

Motivation

I Detect all runtime errors,

I Without executing the programs.

A theoretical hurdle: Rice’s theorem

“any non-trivial semantic property of programs is undecidable”
=⇒ we will compute approximate results

=⇒ our approximate, pessimistic approach may yield false alarms.

Goals

I Automatic analysis: no expert knowledge required.

I Sound analysis: if no bug is detected, none will occur.

5



Static Analysis by Abstract Interpretation

Motivation

I Detect all runtime errors,

I Without executing the programs.

A theoretical hurdle: Rice’s theorem

“any non-trivial semantic property of programs is undecidable”

=⇒ we will compute approximate results
=⇒ our approximate, pessimistic approach may yield false alarms.

Goals

I Automatic analysis: no expert knowledge required.

I Sound analysis: if no bug is detected, none will occur.

5



Static Analysis by Abstract Interpretation

Motivation

I Detect all runtime errors,

I Without executing the programs.

A theoretical hurdle: Rice’s theorem

“any non-trivial semantic property of programs is undecidable”
=⇒ we will compute approximate results

=⇒ our approximate, pessimistic approach may yield false alarms.

Goals

I Automatic analysis: no expert knowledge required.

I Sound analysis: if no bug is detected, none will occur.

5



Static Analysis by Abstract Interpretation

Motivation

I Detect all runtime errors,

I Without executing the programs.

A theoretical hurdle: Rice’s theorem

“any non-trivial semantic property of programs is undecidable”
=⇒ we will compute approximate results

=⇒ our approximate, pessimistic approach may yield false alarms.

Goals

I Automatic analysis: no expert knowledge required.

I Sound analysis: if no bug is detected, none will occur.

5



Static Analysis by Abstract Interpretation

Motivation

I Detect all runtime errors,

I Without executing the programs.

A theoretical hurdle: Rice’s theorem

“any non-trivial semantic property of programs is undecidable”
=⇒ we will compute approximate results

=⇒ our approximate, pessimistic approach may yield false alarms.

Goals

I Automatic analysis: no expert knowledge required.

I Sound analysis: if no bug is detected, none will occur.

5



Static Analysis & Dynamic Programming Languages

Static analyses successfully work on critical embedded C software.
Contrary to C, Python leaves less information in the syntax.

Static analyses are especially helpful – though difficult –
on dynamic programming languages.

We present a static type analysis for Python...
but first let’s take a look at Python’s semantics.

6



Static Analysis & Dynamic Programming Languages

Static analyses successfully work on critical embedded C software.
Contrary to C, Python leaves less information in the syntax.

Static analyses are especially helpful – though difficult –
on dynamic programming languages.

We present a static type analysis for Python...
but first let’s take a look at Python’s semantics.

6



Static Analysis & Dynamic Programming Languages

Static analyses successfully work on critical embedded C software.
Contrary to C, Python leaves less information in the syntax.

Static analyses are especially helpful – though difficult –
on dynamic programming languages.

We present a static type analysis for Python...

but first let’s take a look at Python’s semantics.

6



Static Analysis & Dynamic Programming Languages

Static analyses successfully work on critical embedded C software.
Contrary to C, Python leaves less information in the syntax.

Static analyses are especially helpful – though difficult –
on dynamic programming languages.

We present a static type analysis for Python...
but first let’s take a look at Python’s semantics.

6



Semantics of Python



Semantics – Motivation

Semantics?
A mathematical description of the behavior of Python operators.

Why?
To relate static analyses with the actual program behavior,
and prove that our static analyses are correct.

7



An Example: e1 + e2

a1 = eval e1; a2 = eval e2

has_field(a1, __add__)?
No

Yes

has_field(a2, __radd__)

&& type(a1) < type(a2)?

Yes

No

a3 = call a1’s__add__ on a1, a2

a3 == NotImplemented?

No

Yes

Result is a3

has_field(a2, __radd__)

&& type(a1) 6= type(a2)?

Yes

No

a3 = call a2’s__radd__ on a1, a2

a3 == NotImplemented?

Yes

No

Type Error
8



Semantics – Challenges and Future Work

Uncovering the semantics

I No standard, CPython is the reference interpreter.

I Done by reading the documentation and CPython’s source.

Checking the semantics is correct

We are currently using CPython’s tests...

Other approaches

I Coq: extractable interpreter, proofs.

I K framework: interpreter, semantics coverage tests, deductive
verification.

Both are time-consuming...

9



Semantics – Challenges and Future Work

Uncovering the semantics

I No standard, CPython is the reference interpreter.

I Done by reading the documentation and CPython’s source.

Checking the semantics is correct

We are currently using CPython’s tests...

Other approaches

I Coq: extractable interpreter, proofs.

I K framework: interpreter, semantics coverage tests, deductive
verification.

Both are time-consuming...

9



Semantics – Challenges and Future Work

Uncovering the semantics

I No standard, CPython is the reference interpreter.

I Done by reading the documentation and CPython’s source.

Checking the semantics is correct

We are currently using CPython’s tests...

Other approaches

I Coq: extractable interpreter, proofs.

I K framework: interpreter, semantics coverage tests, deductive
verification.

Both are time-consuming...

9



Semantics – Challenges and Future Work

Uncovering the semantics

I No standard, CPython is the reference interpreter.

I Done by reading the documentation and CPython’s source.

Checking the semantics is correct

We are currently using CPython’s tests...

Other approaches

I Coq: extractable interpreter, proofs.

I K framework: interpreter, semantics coverage tests, deductive
verification.

Both are time-consuming...

9



Static Type Analysis



Static Type Analysis Example

def fspath(p):

if isinstance(p, (str, bytes)):

return p

elif hasattr(p, "__fspath__"):

res = p.__fspath__()

if isinstance(res, (str, bytes)):

return res

else:

raise TypeError("...")

else:

raise TypeError("...")

class FSPath:

def __fspath__(self):

return 42

if *:

i = ’a’

elif *:

i = b’path’

else:

i = FSPath()

r = fspath(i)

i : str or bytes or FSPath.

r : str or bytes,
or a TypeError is raised.

10



Static Type Analysis Example

def fspath(p):

if isinstance(p, (str, bytes)):

return p

elif hasattr(p, "__fspath__"):

res = p.__fspath__()

if isinstance(res, (str, bytes)):

return res

else:

raise TypeError("...")

else:

raise TypeError("...")

class FSPath:

def __fspath__(self):

return 42

if *:

i = ’a’

elif *:

i = b’path’

else:

i = FSPath()

r = fspath(i)

i : str or bytes or FSPath.
r : str or bytes,
or a TypeError is raised.

10



Features of the Analysis

Our analysis:

I Detects uncaught exceptions (TypeError, AttributeError),

I Is flow-sensitive,

I Keeps track of aliasing,

I Proceeds by function inlining,

I Supports bounded polymorphism,

I Supports ≈ 200 functions from the standard library.

11



Classical Typing vs Static Type Analysis

Why don’t you use classical typing?

I We do not forbid some valid Python programs.

I Rather, we collect exceptions (that can be caught later on).

I Our analysis is flow-sensitive.

I Our analysis could be extended with other static analyses.

I Our analysis is not as modular as most type systems are
(concerning functions, loops).

12



Implementation into MOPSA

Modular Open Platform for Static Analysis

I Modular abstract domains are small “blocks”, handling
everything from: abstract values to control-flow statements.

I Statements flow through these domains until one answers.

I The user can select the combination of abstract domains.

I Supports Python and C analysis
(some parts are shared in a “universal” language).

13



Implementation into MOPSA

Implementation size:

I 5500 lines of OCaml for Python’s semantics,

I 2500 for Python’s type abstract domain,

I 2100 for Python’s containers abstractions,

I 1800 for the universal language (loop & function analysis),

I 15000 for the modular framework.

14



Benchmarks

Official Python Benchmarks:

Name LOC Time # A. # F.A.
fannkuch.py 59 0.07s 0 0
float.py 63 0.06s 0 0
spectral_n.py 74 0.33s 0 1
nbody.py 157 1.5s 0 1
chaos.py 324 5.9s 1

1

0
unpack_seq.py 458 5.4s 0 0
hexiom.py 674 2.2m 0 52

1A real bug was found: a piece of currently unused code was working in
Python 2.x , but not in Python 3.x .

15

https://github.com/python/pyperformance/issues/57


Benchmarks

Official Python Benchmarks:

Name LOC Time # A. # F.A.
fannkuch.py 59 0.07s 0 0
float.py 63 0.06s 0 0
spectral_n.py 74 0.33s 0 1
nbody.py 157 1.5s 0 1
chaos.py 324 5.9s 11 0
unpack_seq.py 458 5.4s 0 0
hexiom.py 674 2.2m 0 52

1A real bug was found: a piece of currently unused code was working in
Python 2.x , but not in Python 3.x .

15

https://github.com/python/pyperformance/issues/57


Conclusion



Conclusion & Future Work

We have developed a static type analysis for Python.

It analyzes real-world benchmarks!

Future Work

I Better concrete semantics,

I Summary-based function analysis,

I Handle libraries,

I Analyze real-world programs.

16


	Introduction
	Semantics of Python
	Static Type Analysis
	Conclusion

