Semantics and Static Analysis of Python

Raphaél Monat, Abdelraouf Ouadjaout, Antoine Miné
2nd July 2019

c g Q SORBONNE
_ Ilp b UNIVERSITE

https://rmonat.fr/mopsa-sif19/

Introduction

K, -
7

\“.. \ ot 5o
a7y

hm&m@mmwwmwwV. (

iy)

oA

/

I JuUsT TYPED
import orttignuity

THAT'S IT?

[
.. T ALS0 SAMPLED

EVERYIHING IN THE

MEDICINE CABINET
FOR COMPARISON.-

[

BUT I THINK THIS
18 THE PYTHON

X

-

COME Joi U5!

I
ITS A WHOLE
NEW WORLD

N

X

PROGRAMMING
IS FUN AGAIN!

I DUNNO...
DYNAMIC TYP
LHITEGRACE?

[

UP HERE!
BUT HOW ARE

YOU FLYING?

O

/

!

NIGHT! EVERYTHING

15 S0 SIMPLE!

T LEARNED ITLAST

print "Hello, world!"

HELLO WORLD 1S TusT

xked. com/353/

xkcd.com/353/

It features:

» A concise and efficient syntax,
» Dynamic typing: types are only known at runtime,
> Introspection,

» Self-modification.

def fspath(p):
if isinstance(p, (str, bytes)):

return p
elif hasattr(p, "__fspath__"):
res = p.__fspath__()
if isinstance(res, (str, bytes)):

return res
else:
raise TypeError("...")

else:
raise TypeError("...")

def fspath(p):
if isinstance(p, (str, bytes)):
return p
elif hasattr(p, "__fspath__"):
res = p.__fspath__()

if isinstance(res, (str, bytes)):

return res
else:
raise TypeError("...")

else:
raise TypeError("...")

Introspection!

def fspath(p):

if isinstance(p, (str, bytes)): Two notions of typing:
elir:t:;;z'cr(p, “_fspath_"): » Nominal, based on classes.
res = p.__fspath__() » Structural, based on
if isinstance(res, (str, bytes)): attributes.
return res
else:
raise TypeError("...")
else:

raise TypeError("...")

def fspath(p):
if isinstance(p, (str, bytes)):

return p
elif hasattr(p, "__fspath__"):
res = p.__fspath__()

if isinstance(res, (str, bytes)):

return res
else:
raise TypeError("...")
else:
raise TypeError("...")

Two notions of typing:
» Nominal, based on classes.

» Structural, based on
attributes.

Type of fspath?

def fspath(p):

if isinstance(p, (str, bytes)): Two notions of typing:
return p .
elif hasattr(p, " fspath._ "): » Nominal, based on classes.
res = p.__fspath__() » Structural, based on
if isinstance(res, (str, bytes)): attributes
return res
else: Type of fspath?
raise TypeError("...")
e a — a,« € {str, bytes} or an
raise TypeError("...") object having a method

__fspath__ returning «.

software
Northense Bl

Motivation

» Detect all runtime errors,

» Without executing the programs.

Motivation

» Detect all runtime errors,

» Without executing the programs.

A theoretical hurdle: Rice’'s theorem

“any non-trivial semantic property of programs is undecidable”

Motivation

» Detect all runtime errors,

» Without executing the programs.

A theoretical hurdle: Rice’'s theorem

“any non-trivial semantic property of programs is undecidable”
— we will compute approximate results

Motivation

» Detect all runtime errors,

» Without executing the programs.

A theoretical hurdle: Rice’'s theorem

“any non-trivial semantic property of programs is undecidable”
— we will compute approximate results
—> our approximate, pessimistic approach may vyield false alarms.

Motivation

» Detect all runtime errors,

» Without executing the programs.

A theoretical hurdle: Rice’'s theorem

“any non-trivial semantic property of programs is undecidable”
— we will compute approximate results
—> our approximate, pessimistic approach may vyield false alarms.

Goals

» Automatic analysis: no expert knowledge required.

» Sound analysis: if no bug is detected, none will occur.

Static analyses successfully work on critical embedded C software.
Contrary to C, Python leaves less information in the syntax.

Static analyses successfully work on critical embedded C software.
Contrary to C, Python leaves less information in the syntax.

Static analyses are especially helpful — though difficult —
on dynamic programming languages.

Static analyses successfully work on critical embedded C software.
Contrary to C, Python leaves less information in the syntax.

Static analyses are especially helpful — though difficult —
on dynamic programming languages.

We present a static type analysis for Python...

Static analyses successfully work on critical embedded C software.
Contrary to C, Python leaves less information in the syntax.

Static analyses are especially helpful — though difficult —
on dynamic programming languages.

We present a static type analysis for Python...
but first let's take a look at Python's semantics.

Semantics of Python

Semantics?
A mathematical description of the behavior of Python operators.

Why?
To relate static analyses with the actual program behavior,

and prove that our static analyses are correct.

a1 =eval e1; ax = eval &

has_field(az,__radd__)

has_field(az,__radd__)
&& type(ay) # type(az)?

v

as = call ay’s__radd__ on a1, a>

h 4

&& type(a1) < type(a)?

as = call a1's__add__ on a1, a»

a3 == NotImplemented?

a3 == NotImplemented?

Uncovering the semantics

» No standard, CPython is the reference interpreter.

» Done by reading the documentation and CPython's source.

Uncovering the semantics

» No standard, CPython is the reference interpreter.

» Done by reading the documentation and CPython's source.

Checking the semantics is correct

We are currently using CPython's tests...

Uncovering the semantics

» No standard, CPython is the reference interpreter.

» Done by reading the documentation and CPython's source.

Checking the semantics is correct

We are currently using CPython's tests...
Other approaches

» Coq: extractable interpreter, proofs.

» K framework: interpreter, semantics coverage tests, deductive

verification.

Uncovering the semantics

» No standard, CPython is the reference interpreter.

» Done by reading the documentation and CPython's source.

Checking the semantics is correct

We are currently using CPython's tests...
Other approaches

» Coq: extractable interpreter, proofs.

» K framework: interpreter, semantics coverage tests, deductive
verification.

Both are time-consuming...

Static Type Analysis

def fspath(p):
if isinstance(p, (str, bytes)):

return p
elif hasattr(p, "__fspath__"):
res = p.__fspath__()
if isinstance(res, (str, bytes)):
return res
else:
raise TypeError("...")
else:
raise TypeError("...")

class FSPath:
def __fspath__(self):
return 42

elif =*:

i = b’'path’
else:

i = FSPath()
r = fspath(i)

i :str or bytes or FSPath.

10

def fspath(p):
if isinstance(p, (str, bytes)):

return p
elif hasattr(p, "__fspath__"):
res = p.__fspath__()
if isinstance(res, (str, bytes)):
return res
else:
raise TypeError("...")
else:
raise TypeError("...")

class FSPath:
def __fspath__(self):
return 42

elif =*:

i = b’'path’
else:

i = FSPath()
r = fspath(i)

i :str or bytes or FSPath.
r: str or bytes,
or a TypeError is raised.

10

Our analysis:

Detects uncaught exceptions (TypeError, AttributeError),
Is flow-sensitive,

Keeps track of aliasing,

>

>

>

» Proceeds by function inlining,

» Supports bounded polymorphism,
>

Supports & 200 functions from the standard library.

11

Why don’t you use classical typing?

We do not forbid some valid Python programs.

Rather, we collect exceptions (that can be caught later on).

>

>

» Our analysis is flow-sensitive.

» Our analysis could be extended with other static analyses.
>

Our analysis is not as modular as most type systems are
(concerning functions, loops).

12

Modular Open Platform for Static Analysis
» Modular abstract domains are small “blocks”, handling
everything from: abstract values to control-flow statements.
» Statements flow through these domains until one answers.
» The user can select the combination of abstract domains.

» Supports Python and C analysis
(some parts are shared in a “universal” language).

13

Implementation size:

5500 lines of OCaml for Python's semantics,
2500 for Python's type abstract domain,

>

>

» 2100 for Python's containers abstractions,

» 1800 for the universal language (loop & function analysis),
>

15000 for the modular framework.

14

Official Python Benchmarks:

Name LOC | Time | # A. | # F.A.
fannkuch.py 59 | 0.07s 0 0
float.py 63 | 0.06s 0 0
spectral _n.py 74 | 0.33s 0 1
nbody.py 157 | 1.5s 0 1
chaos.py 324 | 59s 1 0
unpack seq.py | 458 | 5.4s 0 0
hexiom.py 674 | 2.2m 0 52

15

https://github.com/python/pyperformance/issues/57

Official Python Benchmarks:

Name LOC | Time | # A. | # F.A.
fannkuch.py 59 | 0.07s 0 0
float.py 63 | 0.06s 0 0
spectral _n.py 74 | 0.33s 0 1
nbody.py 157 | 1.5s 0 1
chaos.py 324 | 59s 1! 0
unpack seq.py | 458 | 5.4s 0 0
hexiom.py 674 | 2.2m 0 52

LA real bug was found: a piece of currently unused code was working in
Python 2.x, but not in Python 3.x.

15

https://github.com/python/pyperformance/issues/57

Conclusion

We have developed a static type analysis for Python.
It analyzes real-world benchmarks!
Future Work

» Better concrete semantics,
» Summary-based function analysis,
» Handle libraries,

» Analyze real-world programs.

16

	Introduction
	Semantics of Python
	Static Type Analysis
	Conclusion

