Semantics and Static Analysis of Python

Raphaél Monat, Abdelraouf Ouadjaout, Antoine Miné
2nd July 2019

c g Q SORBONNE
_ Ilp b UNIVERSITE



https://rmonat.fr/mopsa-sif19/

Introduction



K, -
7

\“.. \ ot 5o
a7y

hm&m@mmwwmwwV. (

iy )

oA

/

I JuUsT TYPED
import orttignuity

THAT'S IT?

[
.. T ALS0 SAMPLED

EVERYIHING IN THE

MEDICINE CABINET
FOR COMPARISON.-

[

BUT I THINK THIS
18 THE PYTHON

X

-

COME Joi U5!

I
ITS A WHOLE
NEW WORLD

N

X

PROGRAMMING
IS FUN AGAIN!

I DUNNO...
DYNAMIC TYP
LHITEGRACE?

[

UP HERE!
BUT HOW ARE

YOU FLYING?

O

/

!

NIGHT! EVERYTHING

15 S0 SIMPLE!

T LEARNED ITLAST

print "Hello, world!"

HELLO WORLD 1S TusT

xked. com/353/



xkcd.com/353/

It features:

» A concise and efficient syntax,
» Dynamic typing: types are only known at runtime,
> Introspection,

» Self-modification.



def fspath(p):
if isinstance(p, (str, bytes)):

return p
elif hasattr(p, "__fspath__"):
res = p.__fspath__()
if isinstance(res, (str, bytes)):

return res
else:
raise TypeError("...")
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def fspath(p):

if isinstance(p, (str, bytes)): Two notions of typing:
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Two notions of typing:
» Nominal, based on classes.

» Structural, based on
attributes.

Type of fspath?



def fspath(p):

if isinstance(p, (str, bytes)): Two notions of typing:
return p .
elif hasattr(p, " fspath._ "): » Nominal, based on classes.
res = p.__fspath__() » Structural, based on
if isinstance(res, (str, bytes)): attributes
return res
else: Type of fspath?
raise TypeError("...")
e a — a,« € {str, bytes} or an
raise TypeError("...") object having a method

__fspath__ returning «.
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Motivation

» Detect all runtime errors,

» Without executing the programs.

A theoretical hurdle: Rice’'s theorem

“any non-trivial semantic property of programs is undecidable”
— we will compute approximate results
—> our approximate, pessimistic approach may vyield false alarms.

Goals

» Automatic analysis: no expert knowledge required.

» Sound analysis: if no bug is detected, none will occur.
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Static analyses successfully work on critical embedded C software.
Contrary to C, Python leaves less information in the syntax.

Static analyses are especially helpful — though difficult —
on dynamic programming languages.

We present a static type analysis for Python...
but first let's take a look at Python's semantics.



Semantics of Python




Semantics?
A mathematical description of the behavior of Python operators.

Why?
To relate static analyses with the actual program behavior,

and prove that our static analyses are correct.



a1 =eval e1; ax = eval &

has_field(az,__radd__)

has_field(az,__radd__)
&& type(ay) # type(az)?

v

as = call ay’s__radd__ on a1, a>

h 4

&& type(a1) < type(a)?

as = call a1's__add__ on a1, a»

a3 == NotImplemented?

a3 == NotImplemented?
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Uncovering the semantics

» No standard, CPython is the reference interpreter.

» Done by reading the documentation and CPython's source.

Checking the semantics is correct

We are currently using CPython's tests...
Other approaches

» Coq: extractable interpreter, proofs.

» K framework: interpreter, semantics coverage tests, deductive
verification.

Both are time-consuming...



Static Type Analysis




def fspath(p):
if isinstance(p, (str, bytes)):

return p
elif hasattr(p, "__fspath__"):
res = p.__fspath__()
if isinstance(res, (str, bytes)):
return res
else:
raise TypeError("...")
else:
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class FSPath:
def __fspath__(self):
return 42

elif =*:

i = b’'path’
else:

i = FSPath()
r = fspath(i)

i :str or bytes or FSPath.
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def fspath(p):
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return p
elif hasattr(p, "__fspath__"):
res = p.__fspath__()
if isinstance(res, (str, bytes)):
return res
else:
raise TypeError("...")
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class FSPath:
def __fspath__(self):
return 42

elif =*:

i = b’'path’
else:

i = FSPath()
r = fspath(i)

i :str or bytes or FSPath.
r: str or bytes,
or a TypeError is raised.
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Our analysis:

Detects uncaught exceptions (TypeError, AttributeError),
Is flow-sensitive,

Keeps track of aliasing,

>

>

>

» Proceeds by function inlining,

» Supports bounded polymorphism,
>

Supports & 200 functions from the standard library.
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Why don’t you use classical typing?

We do not forbid some valid Python programs.

Rather, we collect exceptions (that can be caught later on).

>

>

» Our analysis is flow-sensitive.

» Our analysis could be extended with other static analyses.
>

Our analysis is not as modular as most type systems are
(concerning functions, loops).
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Modular Open Platform for Static Analysis
» Modular abstract domains are small “blocks”, handling
everything from: abstract values to control-flow statements.
» Statements flow through these domains until one answers.
» The user can select the combination of abstract domains.

» Supports Python and C analysis
(some parts are shared in a “universal” language).
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Implementation size:

5500 lines of OCaml for Python's semantics,
2500 for Python's type abstract domain,

>

>

» 2100 for Python's containers abstractions,

» 1800 for the universal language (loop & function analysis),
>

15000 for the modular framework.
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Official Python Benchmarks:

Name LOC | Time | # A. | # F.A.
fannkuch.py 59 | 0.07s 0 0
float.py 63 | 0.06s 0 0
spectral _n.py 74 | 0.33s 0 1
nbody.py 157 | 1.5s 0 1
chaos.py 324 | 59s 1 0
unpack seq.py | 458 | 5.4s 0 0
hexiom.py 674 | 2.2m 0 52
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LA real bug was found: a piece of currently unused code was working in
Python 2.x, but not in Python 3.x.
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Conclusion




We have developed a static type analysis for Python.
It analyzes real-world benchmarks!
Future Work

» Better concrete semantics,
» Summary-based function analysis,
» Handle libraries,

» Analyze real-world programs.
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