Value and Allocation Sensitivity in
Static Python Analyses”

Raphaél Monat
Sorbonne Université, CNRS, LIP6
F-75005 Paris, France
raphael.monat@lip6.fr

Abstract

Sound static analyses for large subsets of static program-
ming languages such as C are now widespread. For example
the Astrée static analyzer soundly overapproximates the
behavior of C programs that do not contain any dynamic
code loading, longjmp statements nor recursive functions.
The sound and precise analysis of widely used dynamic pro-
gramming languages like JavaScript and Python remains a
challenge. This paper examines the variation of static analy-
ses of Python - in precision, time and memory usage — by
adapting three parameters: (i) the value sensitivity, (ii) the
allocation sensitivity and (iii) the activation of an abstract
garbage collector. It is not clear yet which level of sensitivity
constitutes a sweet spot in terms of precision versus effi-
ciency to achieve a meaningful Python analysis. We thus
perform an experimental evaluation using a prototype static
analyzer on benchmarks a few thousand lines long. Key find-
ings are: the value analysis does not improve the precision
over type-related alarms; the value analysis is three times
costlier than the type analysis; the allocation sensitivity de-
pends on the value sensitivity; using an abstract garbage
collector lowers memory usage and running times, but does
not affect precision.

CCS Concepts: « Theory of computation — Program anal-
ysis; « Software and its engineering — Semantics.
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1 Introduction

Dynamic programming languages, such as JavaScript and
Python, have become increasingly popular over the last years.
Python currently ranks as the second most used program-
ming language on Github.! It is appreciated for its powerful
and permissive high-level syntax, e.g., it allows program-
mers to redefine all operators (addition, field access, etc.) in
custom classes, and comes equipped with a vast standard
library. Python is a highly dynamic language, featuring dy-
namic typing (any variable can point to any value of any
type, and this type may change during program execution),
introspection (the type of a variable may be inspected at
runtime and affect the control-flow) and self-modification
(attribute addition/deletion at runtime).

In this work, we use a static analysis by abstract interpre-
tation [3] defined previously [16], implemented in a modular
fashion into a prototype static analyzer called Mopsa [12].
We have extended our implementation with a value analysis
close to that of [7]. This analysis aims at precisely analyz-
ing Python programs, and in particular detecting runtime
errors in those programs, namely, raised exceptions escap-
ing to the toplevel. In order to be precise, this analysis is
flow-sensitive, as even variable types may be flow-sensitive.
It is also context-sensitive: due to the complex semantics of
Python, it would otherwise be impossible to analyze methods
without any information on the types of the parameters. Our
analysis strives to be sound for Python programs that do not
include recursive functions, the eval and super statements,
metaclasses, nor asynchronous operators. It detects all uses
of these unsupported features and reports them as unsound-
ness alarms. In the absence of these features, it is sound by
design (up to implementation errors): it overapproximates
the concrete semantics of Python programs, which we mod-
eled formally on paper after reading the reference manual
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and experimenting with the reference Python interpreter.

In particular, we do analyze without compromise important

dynamic features of Python, including the redefinition of

operators, the addition and removal of fields. While only
field access through constant names are precisely supported,
access through computed names is also soundly supported

(taking all possible names into account). This work studies

three research questions (RQ) by varying three parameters:

1. As Python is a dynamic programming language without
explicit type information, the base of our analysis infers
types. Then, we can choose to be value-sensitive by ex-
tending it to numerical invariants inference. In Python,
it is possible to create programs where a variable will
have different types depending on the value of another
variable. RQ1: Does this happen in practice? Does the value-
sensitivity improve the precision over type errors? What is
the cost of adding the value-sensitivity?

2. Python is also object-oriented, so our analysis uses a heap
abstraction to handle objects and aliasing soundly. We
use the recency abstraction [1], and we can choose dif-
ferent allocation sensitivities. In particular, we present
a variable-policy recency abstraction, allowing different
abstract allocation precisions for different objects. RQ2:
Which policy offers the best performance-precision ratio?
Do these policies depend on the value-sensitivity?

3. We can also decide to activate an abstract garbage col-
lector [5, 15], which removes unused abstract addresses.
As the AGC reduces the size of the abstract states, it may
improve the performance of the analyses. RQ3: Is the gain
provided significant enough to offset the cost of the AGC?

As a theoretical evaluation is intractable, we perform an ex-

perimental evaluation, and measure the impact of the param-

eters over the precision as well as the resource consumption
of the analysis. We use benchmarks from CPython (the offi-
cial interpreter), as well as a small real-world utility called

PathPicker, which are a few thousand lines long. These

benchmarks are fairly small, as the sound static analysis

of Python is not as mature as for other languages. Other

static analyzers for Python exist: Fritz and Hage developed a

dataflow type analysis [6], Google has its own type analyzer

called Pytype [13], and Typpete [9] performs type inference
and checking through MaxSMT queries. The forementioned
parameters cannot be adjusted in the other analyzers, which
are thus not included in our experimental evaluation.

We present each parameter in Sections 2, 3 and 4, before

presenting the experimental results in Section 5. Section 6

discusses related works and Section 7 concludes.

2 Type and Value Analyses of Python
This section describes the behavior of the implemented type
analysis (described in more details in [16]). It then shows the
precision gain obtained using values.

Type Analysis. On the example provided in Fig. 1, the
analysis infers that 1 is a list of instances of the Task class.
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1 class Task:

2 def __init__(self, weight):

3 if weight < @: raise ValueError
4 self.weight = weight

¢ 1 = [Task(2), Task(1), Task(3), Task(5)]

s for i in range(len(l)):
=m+ 1[i].weight

o m=m// (i+1)

Figure 1. Value-sensitivity Example

Lists are currently summarized [8] into one weak content
variable (per list) by the analysis. The type analysis infers
that weight is an integer, but without a numeric domain, it
has to assume it can take possible non-positive integer values.
It will thus raise false ValueError alarms during each in-
stantiation of Task. It then infers that m is an integer at line 7.
The type analysis does not maintain numeric length informa-
tion for lists, and thus creates an out-of-bound access alarm
(an IndexError exception in Python) at each list access to
ensure that all reachable exceptions handled are included in
the analysis. As 1 is a list of Task instances and provided that
1[i]is a valid list access, the attribute weight exists for 1[i]
and is an integer. Knowing that bothmand 1[i].weight are
integers, the type analysis infers that the + operator is re-
solved as a call to the __add__ method of m, which returns
an integer. The type analysis is unable to know for sure
that loop body is executed, and in particular that variable
i is defined at line 10. It will thus create a NameError false
alarm, and the division also raises a ZeroDivisionError. In
the end, the analysis inferred precise type information for
1 and m. It infers that if i exists, then it is an integer, and
that seven false alarms can be raised: four ValueErrors, one
IndexError, one NameError and one ZeroDivisionError.

Value Analysis. The value analysis is a refinement of the
type analysis. For example, during the comparison at line 3,
the type analysis infers that weight is an integer, and that
the comparison calls int.__1t__(weight, @). The type
analysis infers that this call will return a boolean, and the
value analysis refines the result: the return will be True, as
the weight is positive. The value analysis infers that 1 is a list
of size four, and that the weight of each Task is between one
and five. It finds that the for loop is executed, and that all list
accesses are valid, avoiding all seven false alarms generated
by the type analysis.

3 Variable-Policy Recency Abstraction

The recency abstraction [1] is used to abstract the heap into
a finite number of abstract addresses. In its canonical form,
the recency abstraction abstracts addresses by a twofold
partitioning. It first splits addresses by their allocation site
I € L, and then through a recency criterion, discriminates
the most recent allocation (I, r), where strong updates are
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possible, from the older addresses (I, 0), which are summa-
rized into a weak address. Given an address to allocate at [,
the recency abstraction will return the recent address (I, r).
Before that, if the recent address (I, r) was already allocated,
the recency abstraction merges the previous recent address
into the matching old address (I, 0). The recency criterion
was introduced to keep precision during the initialization of
a structure, which usually happens just after its allocation.
Without the recency abstraction, all assignments are weak
updates, including the ones at initialization time, and it is
not possible to express that an attribute is always initialized,
resulting in pervasive AttributeError false alarms.

This classic partitioning criterion of heap addresses may
be inadequate for our type analysis. Objects of the same type
allocated at different locations are often indistinguishable for
the type analysis. It is unnecessary, in these cases, to discern
between objects of the same type at different allocation sites.
For this reason, we assess the impact of changing the first
partitioning criterion with a type-based partitioning. The
abstract addresses are now of the shape (t,m), where t € T
is a Python type, and m is the recency criterion m € {r, o}.

In the example of Fig. 1, the usual allocation-site-based re-
cency abstraction would yield four strong abstract addresses:
one for each of the instantiated Tasks. With the new parti-
tioning, the evaluation of Task(2) line 6 creates the address
(Task, r). This address is recent, allowing for strong updates.
In particular, the attribute weight is added to the instance
line 4 for address (Task, r). In the case of the value analy-
sis, the abstract state contains (Task, r) - weight — [2,2].
Then Task(1) is evaluated: upon the allocation of a Task
instance, the recency abstraction detects that (Task, r) is
already in use, and moves it to the old part (Task, o) (the
state is now (Task, o) - weight + [2, 2]). When the weight
assignment line 4 is analyzed, self is still the recent ad-
dress, allowing for a strong update, and yielding the follow-
ing state: (Task, o) - weight + [2, 2], (Task, r) - weight +—
[1,1]. After the analysis of Task(3), the abstract state is
(Task, o) - weight +— [1, 2], (Task, r) - weight — [3,3] ([1, 1]
and [2, 2] are joined in the old address). Note that by using the
recency criterion, the abstraction is able to perform strong
updates. This way we ensure that the weight attribute exists.

We noticed, however, that this partitioning is too coarse
in some cases. For example, the lists allocated at lines 1 and 2
in Fig. 2 would be summarized in the same abstract address
(list, o) after the allocation at line 3. The variables summa-
rizing list contents are defined using the abstract address of
the list. The list contents of qty and els would thus be sum-
marized in the same variable, meaning that all list accesses
to gty or els would have to return both integers and strings,
which lacks precision. In this case, it would be beneficial to
partition abstract addresses by allocation site. In some cases,
we can even go a step further and partition addresses by
(partial) callstacks. This shows that the usual homogeneous
partitioning could benefit from different allocation precision
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1 qty = [3, 1, @]
2 els = ['choc', 'flour', 'egg']
5 exp =[]

¢« for i in range(len(qty)):
5 for j in range(qty[il):
6 exp.append(els[i])

Figure 2. Allocation-sensitivity Example
pall = A(t9 l, C9 m)' (t’ T’ T’ m)
plOC = A(t’ l’ C, m)‘ (t7 l’ T’ m)

otherwise

s t,l,c,m) ift € {list, tuple, dict
PP (1,1, ¢, m) = {Proclt heom)if ¢ € {list tuple, dict )
pan(t, 1, c,m)

Ploc(t, I, ¢, m) if t € {range, slice }

valueS( _
t,le,m) =
Fa {P;ﬁpes(t, I,e,m) otherwise

Figure 3. Allocation policies

depending on the type of the address abstracted. This al-
ternative allocation mechanism is called the variable-policy
recency abstraction. Abstract addresses are now elements of
Addr? = TxLTxCT x {r, o}, where T is the set of types, LT
is the set of program locations extended with top and C" is
the set of callstacks extended with top. The allocation policy
isa functionp : TXL X C X {r,0} — Addr* which given
a type decides which partitioning is applied. This policy is
defined by the user at the beginning of the analysis, and used
by the recency abstraction as the address constructor.

The policies used in the benchmarks are defined in Fig. 3.
The default policy, using only the type-based partitioning
is pan, while the one with location sensitivity is pjoc. The
policy used by the type analysis is pglpes. It uses the type
sensitivity by default. Exceptions are made for containers
such as lists, tuples and dictionaries where partitioning by
location is applied. Type mixes as instanced in Fig. 2 are thus
avoided. In order to be sufficiently precise on the numerical
values that range and slice iterators hold, these objects
are partitioned by allocation site in the value analysis p;’ﬁlues
There is however no need for the same precision in the
type analysis, as all range and slice objects have the same
integer attributes, only differing in values to which the type
analysis is not sensitive. Therefore we find for our RQ2 that
these policies depend on the value-sensitivity.

4 Abstract Garbage Collection

Our first analysis implementation did not include an ab-
stract garbage collector, meaning that all allocated abstract
addresses were kept in the abstract environment until the
end of the analysis. However, we noticed that up to two
thirds of the allocated addresses were unreachable — most
objects are stored into local variables, which are removed
after function returns. We decided, therefore, to implement
an abstract garbage collector (AGC), which detects and re-
moves unreachable abstract addresses and works as a tracing
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1 class A:

2 def __init__(self, v):
3 self.v = v
4

s def f(i):

6 b = A(i)

7 c = A(i+1)

8 return b.v

9

v r1 = f(0)

u  r2 = f(100)

Figure 4. Precision Gain Example with the AGC
garbage collector. Its roots are all the variables bound in the
abstract environment. As the AGC reduces the size of the
abstract states, it may improve the performance of the analy-
ses. This, however, may be offset by the cost of the AGC. An
experimental evaluation is to be found in the next section.

Note that the AGC may also improve the precision due
to its interaction with the recency abstraction (as found in
[15]). The AGC may remove addresses that will allow the
recency abstraction to be more precise — either by consid-
ering previously old addresses recent, or by having fewer
objects summarized in an old address. Fig. 4 provides an ex-
ample for such precision improvements. When performing
a value analysis with the allocation policy p;’ﬁlues, the first
call to (@) line 10 allocates two addresses on the abstract
heap, written (A, 0), (A, r). In the interval domain, two vari-
ables corresponding to the attribute v of each address, exist:
(A,0)-v 1+ [0,0];(A, ) v > [1,1]. Without the AGC, when
analyzing the call to f(100), the first allocation of A triggers
the renaming of the recent address into the old one, and
binds the value of the recent address to 100, resulting in state
(D) in the table below. The second allocation triggers another
renaming, giving state (2). In the end, the analyzer finds that
r, € [0,100], which is sound but imprecise. However, if the
AGC is called between two calls to f at the end of line 10, it is
able to detect that both addresses (A, r), (A, o) are dead, and
it removes them. This means that during the analysis of the
second call, we get state (3) after the first instantiation, and
state (4) in the end, so we can infer that (4, 0)-v > [100, 100]
after line 7, which is precise.

1. 6, during f(100) 1. 7, during f(100)

No AGC | (A,0) - v [0, 1] @] (A0)-v = [0,100] (@
(A, r)- v [100,100] (A, r)- v [101,101]
AGC (A, 0) cleared by AGC | (A, 0) - v  [100,100]
(A, r) - v [100,100] 3)| (A, 7) - v [101,101] (9

5 Experimental Results

We empirically study the parameters mentioned in the three
previous sections, using a prototype analyzer called Mopsa
[12], written in OCaml. Mopsa aims at easing the develop-
ment of new analyses by splitting them into reusable, loosely-
coupled modules. Tables 1, 2 and 3 show the results with
two fixed parameters and only one varying. For the sake
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of readability and concision, we have decided to show only
one instantiation of these fixed parameters per table, but the
results are similar in the other cases.

We took 12 benchmarks from Python’s reference inter-
preter (prefixed with @ ). Out of the 44 benchmarks currently
available, we chose 12 with no external dependencies and
few standard library module dependencies, in order to have
less libraries to support. We also analyze the two main parts
(processInput.py, choose.py) of a real-world command-
line utility from Facebook, called PathPicker (prefixed with
0 ; the LOC for these files consists in the size of the file and
all the PathPicker files imported by this one).

Value Sensitivity. The results of the type and value anal-
yses are to be read in Table 1. Both analyses were performed
with no allocation sensitivity (they respectively used pzlpe
and p;’ﬁlues as allocation policies), and the AGC active. The
memory is measured through OCaml!’s garbage collector
statistics, using the maximum size reached by the major
heap. Reductions in the number of detected expections are
printed in bold. The exceptions detected are split into differ-
ent categories: o type errors: TypeError, AttributeError
exceptions e index errors: out-of-bound list accesses. ® key
errors: key not found during dictionary access, ® math errors:
overflows, divisions by zero, e value errors: when an iter-
able is unpacked in too many values, and e all other errors,
including user-defined exceptions. Some exceptions are sys-
tematically raised by the type analysis (such as index errors
during list accesses). We included these as alarms in the table
to show how many potential errors are eliminated by the
value analysis. To answer RQ1, the precision gained with
the value analysis does not remove any type-related error
in the programs we analyze. We find that the value analysis
is in average 3.25 times slower than the type analysis and
similarly, it needs 3 times more memory. In some rare cases,
the value analysis is able to detect dead code that the type
analysis considers reachable. The value sensitivity does not
reduce the key errors (the abstraction is too coarse). For all
other exception categories, an improvement in precision is
witnessed, e.g. in the case of the index errors, the number of
raised alarms is divided by 10.

Allocation-site Sensitivity. We perform an allocation-
site sensitivity comparison in Table 2, using the value anal-
ysis (the allocation policies are pZﬁlues and p;’oaclues) and the
AGC. For each allocation policy, the time spent, the memory
used, and the number of exceptions detected are indicated.
The best results for each policy are printed in bold. Replying
to RQ2, we find that performing a type-based partitioning at
allocation is more efficient, although it may raise a few more
alarms — less than 9% more in total. Cases such as chaos and
regex illustrate this observation. The analysis of richards re-
veals that the addition of the location sensitivity may cost an
order of magnitude more in resources. This costly increase
is a consequence of objects of the same type being allocated
at different program locations, resulting in more cases to



Value and Allocation Sensitivity in
Static Python Analyses

SOAP ’20, June 15, 2020, London, UK

Table 1. Value-sensitivity Comparison (no allocation sensitivity, with AGC)

be analyzed. In some cases (go, hexiom), the location sensi-
tivity yields quicker analyses, because the analysis without
location sensitivity performs more weak updates (when allo-
cating an address that already exists through the recency),
which are costlier than having multiple recent addresses in
these cases. We tested adding the callstack-sensitivity to the
location-sensitivity. In our benchmarks, it achieved the same
results in precision, and similar analysis times.

Abstract Garbage Collection. We show the effect of the
AGC in Table 3. The AGC does not change the number of
exceptions detected in the benchmarks. We believe the situa-
tion presented in the previous section where a weak object is
accessed, does not happen enough to affect the number of ex-
ceptions detected. We show the time spent and the memory
used during each analysis. The last column gives the relative
change in time spent and memory used when the AGC is
enabled. Answering to RQ3, the activation of the AGC is ex-
tremely beneficial: it almost halves the global memory usage,

Type Analysis (policy: pzlp %) Value Analysis (policy: p;ﬁlues)
Name LOC Time | Mem Exceptions detected Time | Mem Exceptions detected
"| Type Index Key Math Value Other " | Type Index Key Math Value Other
@ fannk 59| 0.32s 3MB 0 9 0 3 0 0] 0.63s 3MB 0 4 0 0 0 0
@ float 63 | 0.19s 3MB 0 2 0 8 0 0] 0.32s 3MB 0 0 0 3 0 0
@ spectral 74 | 0.70s 6MB 0 0 0 9 0 1| 1.7s| 15MB 0 0 0 3 0 0
@ nbody 157 | 1.5s 3MB 0 22 1 11 5 1| 5.7s 9MB 0 1 1 1 0 0
@ chaos 324 | 74s| 42MB 0 28 0 54 10 0 30s | 197MB 0 18 0 4 8 0
@ rayt 411 14s | 74MB 5 0 43 1 1 27s | 171MB 5 0 0 22 1 0
@ scimark | 416 | 1.4s| 12MB 1 1 0 23 0 0| 3.4s| 27MB 1 0 0 3 0 0
@ richards | 426 13s | 112MB 1 4 0 2 1 1 17s | 149MB 1 2 0 0 1 1
@ unpack | 458 | 8.3s 7MB 0 0 0 400 0| 94s 6MB 0 0 0 0 0 0
@ go 461 27s | 345MB 33 20 0 11 0 0| 2.0m| 14GB 33 20 0 4 0 0
@ hexiom 674 | 1.1m | 525MB 0 46 3 2 3| 47m| 3.2GB 0 21 3 0 1 2
@ regex 1792 23s | 18MB 0] 2053 0 0 0 0| 1.3m | 56MB 0 145 0 0 0 0
@ process | 1417 | 10s | 64MB 7 7 1 2 1 2| 12s| 8MB 7 4 1 0 1 2
© choose | 2562 | 1.1m | 1.6GB 12 22 7 19 18 7| 29m | 3.7GB 12 13 7 11 18 7
Total 9294 | 4.0m | 2.8GB 59| 2214 | 12 185 438 16| 13m | 9.1GB 59 228 | 12 51 30) 12
Table 2. Allocation-site Comparison (value analysis & AGC) Table 3. AGC Comparison (type analysis, with p_17*)
Name Nf) loc. sensitivity: p:ﬁlues L(?c, sensitivity: p)”* acl“es Name Without AGC | With AGC Rel. Impr.
Time Mem. A | Time Mem. A Time Mem. | Time Mem. | Time Mem.
@ fannk | 0.63s| 3MB 4] 0.63s| 3MB 4 @ fannk |032s| 3MB|032s| 3MB| 0%| 0%
@ float 0.32s | 3MB 31039 | 3MB 3 @ float 0.22s| 3MB|0.19s| 3MB| 16%| 0%
@ spectral | 17s| 15MB 3| 17s| 15MB 3 @ spectral | 0.72s | 6MB| 0.70s| 6MB| 3%| 0%
# nbody 57s| 9MB 3| 5.0s| 9MB 3 @nbody | 1.7s| 4MB| 15s| 3MB| 10%| 25%
@ chaos 30s | 197MB 30| 24m | 1.2GB 15 @ chaos 10s | 64MB | 7.4s| 42MB/| 28% | 34%
@ rayt 27s | 171MB 28 | 4.5s | 74MB 7 @ rayt 17s| 74MB| 14s| 74MB| 16% 0%
@ scimark | 3.4s| 27MB 3.0s | 27MB 3 @ scimark | 1.5s| 13MB| 14s| 12MB| 5%| 8%
@ richards | 17s | 149MB 5] 69m| 15GB 5 @ richards | 16s|227MB| 13s|112MB| 21%| 51%
® unpack | 9.4s| 6MB 0| 9.6s| 6MB 0 @ unpack | 10s| OMB| 83s| 7MB| 19%| 22%
@ go 2.0m| 14GB 57 | 1.7m | 1.2GB 57 @ go 38s | 604MB | 27s|345MB | 31% | 43%
# hexiom | 47m | 3.2GB 27| 4.2m | 3.2GB 27 @ hexiom | 2.2m | 1.1GB| 1.lm|525MB | 49%| 50%
@ regex 1.3m | 56MB 145 | 3.6m | 85MB 145 @ regex 30s | 24MB| 23s| 18MB| 23%| 25%
O process 12s | 85MB 15| 11s | 74MB 13 ©®process | 14s| 85MB| 10s| 64MB| 28% | 25%
© choose | 2.9m | 3.7GB 68 | 3.lm | 4.3GB 63 O choose | 2.0m| 3.2GB| 1.lm| 1.6GB| 43%| 50%
Total 13m | 9.1GB 392| 87m | 25GB 359 Total 6.5m | 54GB | 4.0m| 2.8GB| 38%| 47%

and brings a 38% analysis time improvement. In addition,
the most significant speedups are observed on the largest
files, showing the scalability of the approach. The AGC rep-
resents less than 6% of the analysis time for all benchmarks
except the last, where it takes 30% of the analysis time. In
the results, the AGC is called after each assignment where
the right-handside is a (function, method or object) call. We
have tested running the AGC at only a fraction of those
assignments, but the results were not as satisfying.

6 Related Work

Static Analysis of Dynamic Programming Languages.
JavaScript is the most popular dynamic language studied by
the static analysis community. One of the first static analyses
for Javascript is “Type Analysis for JavaScript” (TAJS) [11].
Contrary to JavaScript, Python uses a class-based inheritance
system, operations rely less on strings and there is no im-
plicit type conversion. A few other static analyses for Python
exist: Fritz and Hage propose a type-based dataflow analysis
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[6], while Pytype [13] performs a type inference that is used
by Google to check their code and Typpete [9] encodes type
inference rules into a MaxSMT problem. To the best of our
knowledge, these analyzers cannot infer numeric invariants,
and they do not have an abstract heap or an abstract garbage
collector. This is why we could not perform our experiments
on them. This work is based on the implementation of the
modular type analysis we recently developed [16]. We then
refined this type analysis with a value analysis close to the
one described in previous work [7]. In that work, Fromherz
et al. were able to analyze small programs with relational
numeric abstract domains, and the scalability was limited
by the standard library support. Here, the scalability is lim-
ited by the lack of efficient packing techniques [2]. Without
packing, we are able to analyze fannk in 14 seconds with the
polyhedra domain, and the number of out-of-bound false
alarms is halved. We are also able to analyze float in 1.4s, but
then spectral already takes 8.7 minutes.

Heap Abstractions. [14] finds that the recency abstrac-
tion [1] leads to high precision in 75% percent of their cases.
It also studies the precision improvement when more recent
blocks are created per objects. It thus seems natural that most
previous analyses of dynamic programming languages tak-
ing soundly into account object mutation and aliasing used
the recency abstraction [7, 11]. Specialized heap abstractions
for dynamic programming languages exist, such as the heap
with open objects [4], aiming at precisely analyzing code
where object attributes are unknown.

Abstract Garbage Collection. Tracing AGCs were first
mentioned in [10], then described by Might and Shivers in
[15]. More recently, an AGC based on reference counting
was presented [5]. Using an AGC has been found to reduce
the analysis time by an order of magnitude, and sometimes
to improve the precision. All the authors aimed at analyzing
higher-order languages. In this paper, which focuses on dy-
namic object-oriented programming languages, our results
are less impressive, as the relative time improvement is of
38% when using the AGC. Our benchmarks do not show any
alarm reduction when the AGC is active, even though we
do have examples where the AGC improves the precision
of the analysis. Such lack of improvement might be caused
by the imprecision of the analysis, such as the analysis of
containers. In TAJS [11], the authors find that their AGC
reduces their memory consumption, but has little impact on
the precision or the analysis time.

7 Conclusion

Although the value analysis reduces the global number of
false alarms in our benchmarks, the number of type-related
alarms is not reduced, compared to the type analysis. We
have found that the value analysis is more costly than the
type analysis, but only by a factor 3. The value-sensitivity
should thus be chosen with regards to the kind of errors
we are interested in. Our notion of variable-policy recency
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abstraction, allows for a more flexible partitioning of the
abstract addresses, which can be chosen by the user before
running the analysis. In order to have the best precision,
this configuration depends on the chosen value-sensitivity.
In addition to this, being less allocation-sensitive has been
shown to improve the analysis times with only a few more
false alarms. Though, in our benchmarks, the AGC does
not increase the precision of the analysis, it does reduce
significantly the running times and the memory used.

Future work includes: (i) making it possible to change the
allocation-sensitivity during the analysis, (ii) developing a
more modular function analysis, in order to lower the analy-
sis times, (iii) having a relational value analysis that scales,
(iv) finding more precise dictionary abstractions, (v) vali-
dating these experiments on bigger, more realistic Python
applications.
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