
Mlang: an Open-Source Toolchain for the
Income Tax Computation∗

Denis Merigoux1 and Raphaël Monat2

1 Inria Paris
denis.merigoux@inria.fr

2 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
raphael.monat@lip6.fr

Abstract

Once per year, the French Directorate for Public Finances (DGFiP) computes for each
citizen the amount of income tax owed to the State, depending on their earnings reported
on their tax return. This computation is largely automated and performed by a computer
program. The source code is written partly in a custom domain specific language called
M (used only by the DGFiP), and published yearly. The other part is written in C, and
has never been released. Thanks to a mix of retro-engineering and code refactoring, we
are able to present Mlang: an open-source toolchain allowing to reproduce the French
income tax computation.

Introduction Each year, French citizens declare their earnings to the Directorate of Public
Finances (DGFiP). The DGFiP then computes the amount of income tax due from each fiscal
household to the State, according to the rules enacted into law by the French Parliament.
The computation of the income tax is complex, both in terms of the core calculation (tax
brackets and family quotient) and of the astronomical number of exceptions and tax credit
that have to be dealt with. The “simplified earnings declaration”1 has more than 250 inputs.
The implementation of the computation has only been partially published2 since 2016. The
published code consists of approximately 92,000 lines of code, and is written in a custom Domain
Specific Language (DSL) called “M”, created and managed internally by the DGFiP.

Previous work Since the DGFiP did not publish their internal compiler for M, we have
retro-engineered the semantics of M[1] with some input from the DGFiP, paving the way for
an open-source compiler, Mlang. However, testing the Mlang-compiled published code on
private DGFiP test cases yielded a high error rate, with 438 over 542 tests failing. After careful
inspection, we concluded we were missing data. In 2020, we were able to sign an agreement
with the DGFiP to privately access the source code of the M compiler. It turned out that once
the M files have been compiled into C, the compiler inserts those files into a pipeline, which
calls the compiled codebase multiple times, and changes the values of some variables between
the calls. From a technical point of view, this pipeline is needed because M does not support
user-defined functions. This unpublished pipeline, written in C and large of about 33,000 lines
of code, accounts for the French tax computation mechanism called multiples liquidations. The
DGFiP refuses to publish any of its C code, including the pipeline, arguing security concerns.

However, thanks to our private access to the sources, we were able to fix our compiler
through the introduction of a new DSL replacing the pipeline, described below. We believe our
compiler is now correct for the 2018-income tax computation (except in the case of litigations,
happening for 2% of French households3).

∗This work is partially supported by the E.R.C. under Consolidator Grant Agreement 681393 — MOPSA.
1https://www3.impots.gouv.fr/simulateur/calcul_impot/2020/simplifie/index.htm
2https://framagit.org/dgfip/ir-calcul/
3https://www.economie.gouv.fr/files/files/directions_services/dgfip/Rapport/2019/ra2019.pdf

https://www3.impots.gouv.fr/simulateur/calcul_impot/2020/simplifie/index.htm
https://framagit.org/dgfip/ir-calcul/
https://www.economie.gouv.fr/files/files/directions_services/dgfip/Rapport/2019/ra2019.pdf


The Mlang Compiler Merigoux and Monat

Introducing a new DSL We created a second DSL, called M++, that we used to concisely
refactor the unpublished C pipeline into a 100-lines-long new source. Since we considered only
the case of tax computations for years after 2018, and where litigations are not supported, the
M++ code replaces 6,500 lines of unpublished C code. The downscaling factor for the code size
can be explained by writing the code in an appropriate high-level DSL.

Compilation Several transformations (shown in Fig. 1) are applied inside Mlang to the M
and M++ code until reaching a common intermediate representation called BIR (Backend Inter-
mediate Representation), which is a simple imperative, function-less language with arithmetic
computations and conditional statements. Since our compiler manipulates the whole codebase,
it is able to perform optimizations and target multiple backends. Given a restricted set of input
and output variables, the generated code is optimized through dead code removal and partial
evaluation. These simple optimizations allow us to remove at least 58.5% of the BIR program,
and even 97.4% of the program when restricting inputs to the “simplified earnings declaration”.
We can then translate BIR to Python (our only backend to date) or interpret it.

sources.m

source.mpp

M AST

M++ AST

M IR

M++ IR

BIR

OIR

Python

Interpreter

...

Parsing Desugaring Inlining Optimization Transpiling

Figure 1: Mlang compilation passes

Correctness of Mlang We evaluated Mlang on the private test set of the DGFiP and
passed all of them. We also created our custom test cases using random sampling, and compared
the results of Mlang with the internal DGFiP compiler. We did not observe any difference
during interpretation of the new test cases.

Conclusion Mlang is an open-source toolchain4, allowing to reproduce the income tax com-
putation. The whole toolchain is written in OCaml, and is 8,000 LOC, compared to 65,000
LOC for the DGFiP’s compiler written in C. We believe that Mlang will be able to replace the
ageing compiler used by the DGFiP, which was written in the 1990s. This will allow easier code
maintenance, better code analysis support, and the distribution of specialized versions of the
income tax computation program in multiple languages. The last point is particularly interest-
ing, as it could increase the level of assurance for a wide range of applications that currently
use custom, simplified implementations of the income tax computation like OpenFisca.

References
[1] Denis Merigoux, Raphaël Monat, and Christophe Gaie. Étude formelle de l’implémentation du code

des impôts. In 31ème Journées Francophones des Langages Applicatifs, Gruissan, France, January
2020.

4https://github.com/MLanguage/mlang

https://github.com/MLanguage/mlang

