
A Multilanguage Static Analysis of
Python Programs with Native C Extensions∗

Raphaël Monat1�, Abdelraouf Ouadjaout1�, and Antoine Miné1,2�
firstname.lastname@lip6.fr

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
2 Institut Universitaire de France, F-75005, Paris, France

Abstract. Modern programs are increasingly multilanguage, to benefit
from each programming language’s advantages and to reuse libraries.
For example, developers may want to combine high-level Python code
with low-level, performance-oriented C code. In fact, one in five of the
200 most downloaded Python libraries available on GitHub contains C
code. Static analyzers tend to focus on a single language and may use
stubs to model the behavior of foreign function calls. However, stubs are
costly to implement and undermine the soundness of analyzers. In this
work, we design a static analyzer by abstract interpretation that can
handle Python programs calling C extensions. It analyses directly and
fully automatically both the Python and the C source codes. It reports
runtime errors that may happen in Python, in C, and at the interface. We
implemented our analysis in a modular fashion: it reuses off-the-shelf C
and Python analyses written in the same analyzer. This approach allows
sharing between abstract domains of different languages. Our analyzer
can tackle tests of real-world libraries a few thousand lines of C and
Python long in a few minutes.

Keywords: Formal Methods · Static Analysis · Abstract Interpreta-
tion · Dynamic Programming Language · Multilanguage Analysis

1 Introduction

Modern programs are increasingly multilanguage. This allows developers to com-
bine the strengths of different languages and reuse libraries written in other lan-
guages. A host language may call a guest language through an interface; this

∗This work is partially supported by the European Research Council under Con-
solidator Grant Agreement 681393 — MOPSA.

https://orcid.org/0000-0001-8487-0326
https://orcid.org/0000-0001-7248-5914
https://orcid.org/0000-0002-6375-3179

2 R. Monat, A. Ouadjaout and A. Miné

interface is also called a boundary. The guest language is frequently C and is
usually referred to as native code or native C. In this paper, the host language is
Python, and the guest language is C. This work supports the Python API [40] as
the interoperability mechanism between Python and C.1 Using native C modules
in Python is frequent as it allows writing high-level Python code, itself calling
efficient C code. As a matter of fact, one in five of the 200 most downloaded
Python libraries available on GitHub contains C code. Although useful, multi-
language programs generate additional sources of bugs. Indeed, developers need
to take into account different safety mechanisms and memory representations.
Python is safe to the extent that runtime errors in pure Python programs are en-
capsulated into exceptions, which can be caught later on. This safety property
breaks when C modules are used since a runtime error in C may irremedia-
bly terminate the program or create an inconsistent state. Python and C also
have different representations. For example, Python integer objects use at least
24 bytes of memory and have unlimited precision, while C integers have fixed
lengths (generally ranging from 8 to 64 bits) and can suffer from overflows.

Static analysis aims at inferring program properties (e.g., the absence of
runtime errors) by analyzing programs without executing them. Static analyzers
tend to focus on analyzing one language at a time. They may use stubs to model
the behavior of calls to other languages. These stubs may be time-consuming
to implement if written by hand. They can undermine the soundness of the
analyses since the actual code is not analyzed, and the stubs may be imprecise or
wrong. For example, our previous work developing a type analysis for Python [33]
uses official Python type annotations (defined by PEP 484 [39]) as stubs. While
this analysis tracks uncaught Python exceptions, these type annotations do not
declare which exceptions may be raised, thus adding an unchecked assumption
to the soundness property [33, Section 6.2].

We aim at analyzing both the native C code and the Python code (including
callbacks to Python code from the native side) within the same analyzer, called
Mopsa [18]. We perform a precise, flow, and context-sensitive value analysis by
abstract interpretation. Our analyzer works by induction on the syntax and
switches from one language to the other just as the concrete program execution
does. We present a multilanguage static analysis built upon pre-existing value
static analyses by abstract interpretation [9] of C [37] and Python [33, 34]. It
detects runtime errors in the native C code (invalid pointer operations, invalid
memory accesses, integer overflows), in the Python code (raised exceptions), and
at the boundary between the languages. The underlying address allocation and
numeric abstractions are shared. A few multilanguage static analyses exist, and
focus mostly on analyzing Java and C ([43, 12, 13, 14, 45, 22], cf. Section 6). They
compute summaries of the effects of native code on the chosen abstract property
in a bottom-up fashion. Those effects are then translated into the host language,
where a standard analyzer for the host language can then be used. The use of

1Other interoperability mechanisms such as the ctypes from the standard library,
the cffi library, the cython project, or the swig project all use code using this API
or generate code targetting this API. We could thus analyze this generated code.

A Multilanguage Static Analysis of Python Programs with C Extensions 3

summaries to convey the abstract meaning of functions makes it easier to rely on
independent analyzers for each langage. However, the language and properties
we target require precise context-sensitive value analyses that are difficult to
perform bottom-up. Since Python is a dynamic programming language with a
flexible semantics, it is not possible to analyze programs precisely in a context-
insensitive fashion. Additionally, a precise description of the Python heap at a
native call is mandatory to analyze the called C code, check for pointer errors,
and infer effects. We believe the approach described in this paper is general and
could be extended to other multilanguage settings, such as the analysis of Java
and C through the JNI.

Contributions.

– We define a multilanguage semantics for Python programs with native C
modules using the Python C API.

– We show how to lift analyses of Python and C into the multilanguage set-
ting. The underlying address allocation and numeric abstractions are shared,
paving the way for relational invariants between Python and C variables.

– We built an implementation on top of an existing static analysis platform
called Mopsa that was previously used to design independent analyses for C
and for Python. We added support for multilanguage C/Python programs by
only adding domains modeling the boundary. We reuse the previous domains
analyzing C and Python off-the-shelf. Thanks to this construction, we can
detect runtime errors at the boundary, but also in the Python code and in
the native C code.

– We evaluate our approach on six real-world libraries found on GitHub. We
show that we can scale to libraries of 5,800 combined lines of Python and C
code within five minutes.

Artifact. An artifact [35] is available alongside this article. The artifact makes
Table 2 and the claim about the percentage of Python packages containing C
code on Github (made in Section 1) reproducible. The example codes displayed
in Figure 1 and Figure 12 are provided in the artifact, along with instructions to
run our analyzer on them. The source code of the modified version of Mopsa is
also included. We plan on merging our changes into the public version of Mopsa
[19].

Limitations. Our concrete semantics is high-level and makes the assumption
that builtin Python objects are only manipulated through the API in C (this as-
sumption is verified by our analyzer). The garbage collection based on reference
counting is not supported by our semantics. Thus, we cannot detect dealloca-
tions that are performed too soon or that are not performed at all. There is
no formal soundness proof that our concrete semantics effectively models the

4 R. Monat, A. Ouadjaout and A. Miné

behavior of the Python interpreter. Potential runtime errors in the API imple-
mentation modeled by our concrete semantics as builtins cannot be detected.2
Our implementation supports relational analyses, but those do not scale to real-
world examples (thus, we use intervals for the numeric abstraction by default).
These limitations could be removed in future work.

Outline. We start by showing a self-contained motivating example in Section 2,
giving insights on how native C modules are defined and how they work with
Python. We define the concrete semantics of these multilanguage programs in
Section 3, and explain the abstractions performed in Section 4. Section 5 presents
our implementation and the analysis results. We discuss related work in Section 6
and conclude in Section 7.

2 An Extension Module Example

This section provides an in-depth motivating example. We show how to define
a native C extension module, and how it can be used by a Python client code.
We end the section by discussing which errors may happen.

When developers want to run native C code in Python, they define native C
extension modules using the Python API. These modules may contain attributes,
methods, and classes, just as any other Python module. However, these methods
and classes are now written in C. API functions are denoted by the Py prefix (and
written in magenta in the listings). The semantics of some of these functions are
described formally in Section 3.

Counter module, viewed from Python. Our example is a C module defining
a Counter class, alongside some client code in Python. This example is self-
contained and shown in Figure 1. From a high-level point of view, the counter
module defines a Counter class. Instances of Counter can be created (count.py,
line 4); their internal counter can be incremented using the incr method, which
takes an optional integer argument being the increment (lines 6-7); they also
have a read-only attribute counter returning their current value (line 8).

Counter, viewed from C. In C, instances of Counter will be stored using
the CounterO struct. This struct starts with a PyObject ob_base field. All
Python objects are represented as PyObjects in C. Putting the PyObject as the
first field in the Counter structure allows casting to and from Python objects.3
The PyObject definition is part of the API and shown in Figure 2. Its fields
are a reference counter for the garbage collector and a pointer to the class to

2However, half of the API supported by our implementation uses the original C
implementation, which is analyzed and where runtime errors would be detected.

3According to the ISO C reference, “a pointer to a structure object, suitably con-
verted, points to its initial member, and vice versa”.

A Multilanguage Static Analysis of Python Programs with C Extensions 5

count.py
1 import counter
2 import random
3
4 c = counter.Counter()
5 p = random.randrange(128)
6 c.incr(2**p-1)
7 c.incr()
8 r = c.counter

counter.c
9 #include <Python.h>

10 #include "structmember.h"
11
12 typedef struct {
13 PyObject ob_base;
14 int count;
15 } CounterO;
16
17 static PyObject*
18 CounterIncr(CounterO *self, PyObject *args)
19 {
20 int i = 1;
21 if(!PyArg_ParseTuple(args, "|i", &i))
22 return NULL;
23 self->count += i;
24 Py_RETURN_NONE;
25 }
26
27 static int
28 CounterInit(CounterO *self, PyObject *args,
29 PyObject *kwds)
30 {
31 self->count = 0;
32 return 0;
33 }
34
35 static PyMethodDef CounterMethods[] = {
36 {"incr", (PyCFunction) CounterIncr,
37 METH_VARARGS, ""}, {NULL}
38 };

counter.c
40 static PyMemberDef CounterMembers[] = {
41 {"counter", T_INT, offsetof(CounterO,
42 count), READONLY, ""}, {NULL}
43 };
44
45 static PyType_Slot CounterTSlots[] = {
46 {Py_tp_new, PyType_GenericNew},
47 {Py_tp_init, CounterInit},
48 {Py_tp_methods, CounterMethods},
49 {Py_tp_members, CounterMembers}, {0, 0}
50 };
51
52 static PyType_Spec CounterTSpec = {
53 .name = "counter.Counter",
54 .basicsize = sizeof(CounterO),
55 .itemsize = 0,
56 .flags = Py_TPFLAGS_DEFAULT
57 | Py_TPFLAGS_BASETYPE,
58 .slots = CounterTSlots
59 };
60
61 static struct PyModuleDef countermod = {
62 PyModuleDef_HEAD_INIT, .m_name = "counter",
63 .m_methods = NULL, .m_size = -1
64 };
65
66 PyMODINIT_FUNC
67 PyInit_counter(void)
68 {
69 PyObject *m = PyModule_Create(&countermod);
70 if(m == NULL) return NULL;
71 PyObject* CounterT =
72 PyType_FromSpec(&CounterTSpec);
73 if(CounterT == NULL || PyModule_AddObject(
74 m, "Counter", CounterT) < 0) {
75 Py_DECREF(m);
76 return NULL;
77 }
78 return m;
79 }

Fig. 1. Example of a Python client program alongside a C counter module

1 typedef struct PyObject {
2 Py_ssize_t ob_refcnt;
3 struct PyTypeObject *ob_type;
4 } PyObject;
5
6 typedef PyObject *(*PyCFunction)
7 (PyObject *, PyObject *);
8 typedef int (*initproc)
9 (PyObject *, PyObject *, PyObject *);

10
11 typedef struct PyMethodDef {
12 const char *ml_name; PyCFunction ml_meth;
13 int ml_flags; const char *ml_doc;
14 } PyMethodDef;
15
16 typedef struct PyMemberDef {
17 const char *name; int type;

18 Py_ssize_t offset; int flags;
19 const char *doc;
20 } PyMemberDef;
21
22 typedef struct PyTypeObject {
23 PyObject ob_base;
24 const char *tp_name;
25 Py_ssize_t tp_basicsize;
26 Py_ssize_t tp_itemsize;
27 unsigned long tp_flags;
28 struct PyMethodDef *tp_methods;
29 struct PyMemberDef *tp_members;
30 struct PyTypeObject *tp_base;
31 PyObject *tp_dict;
32 initproc tp_init;
33 newfunc tp_new;
34 } PyTypeObject;

Fig. 2. Extract of Python’s API header files

6 R. Monat, A. Ouadjaout and A. Miné

which it belongs. PyTypeObject is Python’s type object, from which all classes
derive. The second field of CounterO is the instance’s data: an integer count,
not directly exposed to Python.

The Counter class’ specification is defined lines 52-59. It has three methods
stored in the Py_tp_new, Py_tp_init, and Py_tp_methods fields. It also defines
a special attribute member counter lines 41-42. The PyTypeObject structure is
synthesized from the specification by PyType_FromSpec (line 72). These methods
and members are lifted to become Python attributes and methods when the class
is initialized (in PyType_FromSpec). Other fields are defined in the PyTypeObject
structure. tp_basicsize, tp_itemsize define the size (in bytes) of instances.
tp_flags is used to perform fast instance checks for builtin classes. tp_base
points to the parent of the class. tp_dict is the class’ dictionary used by Python
to resolve attribute accesses (created during class initialization).

Module import. When executing the import counter statement, the C func-
tion PyInit_counter is called. This function starts by creating a module whose
name (line 62) is counter with no methods attached to it (line 63). Then, the
CounterT class is created (lines 71-72), and the class is bound to the module
(lines 73-74). Python uses a reference-counting-based garbage collector, which
has to be manually handled using the Py_INCREF and Py_DECREF macros in C.
If no errors have been encountered, the module object is returned at the end of
the function, and counter will now point to this module in Python.

Class initialization. The call to PyType_FromSpec creates the Counter class
from its specification. The function PyType_FromSpec starts by creating the
PyTypeObject and fills its fields according to the specification. This structure
is then passed to PyType_Ready which populates the tp_dict field of the class.
This field is the class’ dictionary used by Python to resolve attribute accesses.
Before this call, the attribute counter and the methods __new__, __init__, and
incr do not exist on the Python side. We explain how these C functions are en-
capsulated into Python objects by PyType_Ready. The prototype of C functions
for Python is PyCFunction (Figure 2, line 6). Some signature adaptations may
be needed for specific kinds of functions. For example, initialization methods
(such as CounterInit) return a C int by convention. Thus, CounterInit will
be wrapped into a function called wrap_init, which behaves as a PyCFunction.
It is then encapsulated into a builtin Python descriptor object. Upon a call to
this object, this descriptor performs pre- and post-call checks (described in Sec-
tion 3). Continuing our example, wrap_init will be stored into an instance of
the builtin wrapper_descriptor object. These descriptors are then added to
the class dictionary. Table 1 describes the three other fields.

Counter creation. When a new instance of Counter is created (line 4), Python
starts by allocating it by calling Counter.__new__. This call will eventually
be resolved into PyType_GenericNew (from tp_new), allocating the object and

A Multilanguage Static Analysis of Python Programs with C Extensions 7

Table 1. Python Counter structure summary

Attribute Encapsulating Object Underlying Wrapper Underlying C definition

__new__ builtin_function tp_new_wrapper PyType_GenericNew
__init__ wrapper_descriptor wrap_init CounterInit
incr method_descriptor ∅ CounterIncr
counter member_descriptor ∅ CounterMembers[0]

initializing the necessary fields (such as ob_refcnt and ob_type of PyObject).
Then, Counter.__init__ is called and the C function CounterInit ends up
being called. It initializes the count field of the CounterO struct to 0.

Counter increment. When the incr function is called, it is resolved through
Python’s attribute accesses into CounterIncr. CounterIncr uses the standard
Python function prototype, corresponding to PyCFunction (Figure 2). Its first
argument is the object instance (here, the instance stored in variable c), and the
second argument is a tuple of the arguments passed to the function (for the call
at line 6 it is a tuple of length one containing 2**p-1, and an empty one for the
second call at line 7). PyArg_ParseTuple is a helper C function from the Python
API converting the Python arguments wrapped in the tuple into C values.4
It uses a format string to describe the conversion. The | character separates
mandatory arguments from the optional ones, while i signals a conversion from
a Python integer to a C int. Internally, the conversion is done from a Python
integer to a long (which may fail with an exception since Python integers are
unbounded), which is then cast to an int if size permits (otherwise, another
exception is set). In the first call to CounterIncr, i will be assigned 2**p-1 if
the conversion is successful. In the second call, i will keep its default value, 1.
The internal value of the counter is then incremented by i, and then Python’s
None value is returned.

Counter access. Thanks to the complex semantics of Python, attribute ac-
cesses can actually hide calls to custom getter and setter functions through the
descriptor protocol [33, Figure 6]. In our case, PyType_Ready takes the member
declaration lines 40-43, and creates those custom getters and setters through
a member_descriptor builtin object. The access to attribute counter at line
8 calls the getter of this member_descriptor object. This getter accesses the
count field of the CounterO struct and converts the C integer into a Python
integer. The READONLY flag in the declaration ensures that any call to the setter
function raises an exception. These member descriptors are supported by our
analysis.

4Py_BuildValue is the converse function translating C values to Python ones.

8 R. Monat, A. Ouadjaout and A. Miné

What can go wrong? Depending on the chosen value of p the result r will
range from (i) the expected value (r = 2p when 0 ≤ p ≤ 30), (ii) conversion
errors raised as OverflowError exceptions (with messages depending on wheter
p ≤ 64), (iii) a silent integer overflow on the C side, causing a wrap-around
which is an unexpected behavior for Python developers (r = −231 for p = 31).
All these errors are due to different representations between the builtin values
of the language. The C integer overflow does not interrupt the execution. This
motivates the creation of our analysis targeting all kinds of runtime errors in
both host and guest languages as well as at the boundary. Our analysis infers all
reachable C and Python values, as well as raised exceptions in order to detect
these runtime errors. In this example, our analyzer is able to detect all these
cases. Our analyzer is also able to prove that the program is safe when p ranges
between 0 and 30.

Common bugs at the boundary. We refer the reader to the work of Hu and
Zhang [16] for an empirical evaluation of bugs at the boundary between Python
and C. The most frequent bugs happening at the boundary are:

– mismatches between a returned NULL and the exception being set in C (NULL
should be returned by Python C functions if and only if an exception has
been set – cf. Figure 8 in the next section),

– mismatches between the C and Python datatypes during conversion (in calls
to PyArg_ParseTuple, PyLong_FromLong),

– integer overflows during conversions from arbitrary-precision Python integers
to C,

– reference-counting errors (not supported by our analyzer).

3 Concrete Semantics

This section defines the semantics of the interface between Python and C. It is
built upon the semantics of each language. Our goal is to delegate most of the
work to the semantics of each language, each used in a black-box fashion. This
delegation will also simplify our implementation as we will reuse the analyses of
Python and C in a similar black-box fashion.

A key assumption of our semantics is that builtin Python objects (such as
integers and dictionaries) can only be accessed from C through the API provided
by the interpreter. As such, any access to the builtins through the C API can be
encoded as a call back to the Python language. Thus, each language will have
complementary representations of Python objects. Each language has a view of
any Python object. Accesses to the other view are done by switching language.
To illustrate this representation on our running example, the int count field
from a Counter instance is only exposed from the C. It is possible to read the
counter’s value from Python. This can only be done by calling a C function
performing the conversion of the C integer into a Python integer. This object
is new and independent from the C integer. Hence, only C code directly deref-
erences the field value from the object memory. Conversely, an attribute that

A Multilanguage Static Analysis of Python Programs with C Extensions 9

is dynamically added to a Python object is stored in the instance’s dictionary.
This dictionary is opaque from C. Accessing it through the C language using the
API will ultimately be evaluated as a Python attribute access in our semantics.
As illustrated in these examples, mutable parts of the objects are not directly
available through both languages. There is thus no need to perform systematic
state reductions when switching from one language to the other.

Our concrete semantics defines the operators working at the boundary. These
operators allow switching from one language to another or converting the value
of one language to the other. We define how Python may call C functions, and
how C may perform callbacks to Python objects. We also define conversions
between Python integers and C longs. API functions working on other builtin
datatypes (such as floats, strings, lists, ...) exist and are supported by our anal-
ysis. They are similar to the integer case and are not described in this article.
The definitions of these operators rely on calls to boundary functions between
the two languages. These boundaries ensure that objects have the correct shape
in the other language state. The boundary from C to Python also checks that
only valid Python objects are passed back.

We define the state on which each semantics operates. In the following,
Python-related states and expressions will be written in green. C-related states
and expressions will be in orange. We reuse the states defined in the work of
Monat et al. [33] for Python and Ouadjaout and Miné [37] for C. A set of heap
addresses Addr (potentially infinite) is common to the states. Previous works
[11, 33, 37] define the semantics of Python and C.

Python state (Figure 3). Python objects are split into a nominal part and
a structural part. The nominal part ObjN can be a builtin object such as an
integer (we omit other builtins for the sake of concision), a function, a class, or an
instance (defined by the address of the class from which it is instantiated). The
structural part ObjS maps attribute names to their contents’ addresses. A state
Σp consists of an environment and a heap. The environment Ep maps variable
identifiers Idp to addresses (or LocalUndef for local variables with an undefined
value). The heap Hp maps addresses to objects. Given a state σp ∈ Σp, we write
as σ.εp its environment and σ.ηp its heap. Following Fromherz et al. [11], the
state is additionally tagged by a flow token to handle non-local control-flow:
cur represents the current flow on which all instructions that do not disrupt the
control flow operate (e.g., assignments, but not raise); exn collects the states
given by a raised exception. exn is indexed by the address of the exception object,
so each exception will be kept separate. These continuation-tagged states are
standard in abstract interpreters working by induction on the syntax to model
non-local control-flow. Evaluating an expression e through EpJ e K in a given state
yields a Python value in a new state. This value may be ⊥ if the evaluation fails.
We use letb v, σ = f(e) in body as syntactic sugar for let r, σ = f(e) in if r 6=
⊥ then body else ⊥, σ.

10 R. Monat, A. Ouadjaout and A. Miné

ObjN
def
= int(i ∈ Z) ∪ Fun(f)

∪Class(c) ∪ Inst(a ∈ Addr)

ObjS
def
= string ⇀ Addr

Valuep
def
= Addr

Fp
def
= { cur , exn a ∈ Addr }

Ep
def
= Idp ⇀ Addr ∪ LocalUndef

Hp
def
= Addr ⇀ ObjN×ObjS

Σp
def
= Fp × Ep ×Hp

EpJ expr K : Σp → Valuep
⊥ ×Σp

SpJ stmt K : Σp → Σp

Fig. 3. Concrete Python State

Cells def
= { Hb, o, tI | b ∈ Base, t: scalar

type, 0 ≤ o ≤ sizeof(b)− sizeof(t) }

Ptr
def
= (Base× Z) ∪ { NULL, invalid }

Base
def
= Idc ∪Addr

Valuec
def
= MNum ∪ Ptr

Ec
def
= Cells ⇀ Valuec

Hc
def
= Addr ⇀ ident× N

Σc
def
= Ec ×Hc

EcJ expr K : Σc → Valuec
⊥ ×Σc

ScJ stmt K : Σc → Σc

Fig. 4. Concrete C State

Σ = Σp ×Σc

p↪→c : Valuep ×Σ → Valuec ×Σ

c↪→p : Valuec ×Σ → Valuep
⊥ ×Σ

Ep×cJ exprp K : Σ → Valuep
⊥ ×Σ

Ep×cJ exprc K : Σ → Valuec
⊥ ×Σ

Fig. 5. Combined State

C state (Figure 4). The memory is decomposed into blocks Base which are
either variables Idc or heap addresses Addr. Each block is decomposed into
scalar elements (machine integers, floats, pointers). Hb, o, τI denotes the memory
region in block b, starting at offset o and having type τ . C values Valuec are
either machine numbers MNum, or pointers Ptr defined by their block and
offset. Additionally, pointers can be NULL or invalid. The state Σc consists of
an environment and a heap. The environment Ec maps scalar elements to values.
The heap Hc maps addresses to the type of allocated resource and their size. The
type of allocated resource is Malloc when the standard C library malloc is used5.
The Python allocator (called by PyType_GenericNew) will create resources of
type PyAlloc, ensuring that: (i) Python objects are well constructed by the
correct allocator (ii) the C code cannot access these “opaque” objects and needs
to use the API.

5Other resources (such as file descriptors) can also be defined [37].

A Multilanguage Static Analysis of Python Programs with C Extensions 11

Combined state (Figure 5). Two new kinds of nominal objects are added to
Python: CFun f for Python functions defined in C, CClass c for Python classes
defined in C (where f and c denote the name of the underlying C function or
class declaration). The combined state used for the multilanguage semantics is
the product of the Python and C states, written Σ. Note that each state may
reference addresses originally allocated by the other language (in the running
example, the Python variable c points to the address of the Counter instance,
which has been allocated on the C side by PyType_GenericNew). In the following,
we define two boundary functions converting a Python value into a C value and
conversely (written p↪→c and c↪→p). The multilanguage semantics Ep×cJ · K is
defined over Python and C expressions. It operates over the whole state Σ and
its return value matches the language of the input expression. We define the
semantics of some builtins working at the boundary between Python and C,
which require the whole state. For expressions not working at the boundary, the
multilanguage semantics defaults to the usual Python or C semantics:

Ep×cJ exprp K(σp, σc) = EpJ exprp K(σp), σc

Ep×cJ exprc K(σp, σc) = σp,EcJ exprc K(σc)

Boundary functions. Boundary functions ensure that Python objects are cor-
rectly represented in the heap of each language. The C to Python boundary also
ensures that only Python objects are passed back to Python. These functions do
not convert values from one language to another. This kind of conversion is han-
dled by builtin conversion functions such as PyLong_AsLong, PyLong_FromLong
for Python integer to C long conversion. These boundary functions are lazy and
shallow: (i) only objects switching languages are passed through those bound-
aries, (ii) an object that has already been converted does not need to be converted
again (i.e., when its address is already in the other language’s heap).

The boundary from Python to C is described in Figure 6. The boundary is
first applied recursively to the class of the object (using the type operator of
Python). Then, the ob_type field of the object is initialized to point to its class.
The last step performed is to update the heap: the object has been allocated by
Python, and has the size of PyObject (if the object is a class, it has the size of
PyTypeObject, and we call the class initializer afterward).

The converse boundary (Figure 7) starts by checking that the value is a heap
allocated Python object, allocated with resource type PyAlloc. It calls itself
recursively on the class of the object (using the ob_type field in C). The Python
heap is updated with the converted object.

C call from Python (Figure 8). The semantics of C function calls from
Python is shown in Figure 8. The function in_check enforces that e1 should be
an instance of the class to which f is bound. Otherwise, a TypeError exception
is raised. C functions callable from Python can only have two arguments (cf. the
type of PyCFunction, Figure 2, line 6). Thus, the Python arguments are split

12 R. Monat, A. Ouadjaout and A. Miné

into the first one e1 and the other ones, bundled in a tuple. The boundary from
Python to C is applied to e1, and to the tuple containing the other arguments.
Then, the C function is evaluated using the standard C semantics. Afterward,
out_check ensures that the function returned NULL if and only if an exception
has been set in the interpreter state. Otherwise, a SystemError exception is
raised. Finally, the C value is passed through the boundary function.

Python call from C (Figure 9). Calls back to Python from the C code are
possible using the PyObject_CallObject function. The first argument is the ob-
ject being called. The second argument is a tuple containing all the parameters.
These two arguments are first passed through the C to Python boundary. Then,
we use the Python semantics to evaluate the call (the * operator in Python
unpacks the tuple into the arguments of the variadic function). If the call is
successful (i.e., the execution is normal, shown by flow token cur), the converse
boundary function is applied. If an exception has been raised during the evalu-

p↪→c(vp, σp, σc) =

if vp ∈ σ.ηc then (vp, 0), σp, σc else
letb typ, σp = EpJ type(vp) Kσp in
letb (tyc, 0), σp, σc = p↪→c(typ, σp, σc) in
let σc = ScJ vp->ob_type = tyc Kσc in
let σp, σc =

if σp(vp) = Class(c) then
let σc = σ.εc, σ.ηc[vp 7→ PyAlloc, sizeof(PyTypeObject)] in
Ep×cJ PyType_Ready(vp) K(σp, σc)

else σp, (σ.εc, σ.ηc[vp 7→ PyAlloc, sizeof(PyObject)])

in (vp, 0), σp, σc

Fig. 6. Python to C value boundary

c↪→p(vc, σp, σc) =

if vc 6∈ Addr× { 0 } || σ.ηc(fst vc) 6= (PyAlloc,_) then ⊥, σp, σc else
let v = fst vc in
if v ∈ σ.ηp then v, σp, σc else
letb tyc, σc = EcJ ((PyObject*)v)->ob_type Kσc in
letb typ, σp, σc = c↪→p(tyc, σp, σc) in
let σp = σ.εp, σ.ηp[v 7→ Inst(typ), ∅] in v, σp, σc

Fig. 7. C to Python value boundary

A Multilanguage Static Analysis of Python Programs with C Extensions 13

Ep×cJ (CFun f)(e1, e2, . . . , en) K(σp, σc) =

letb σp = in_check(CFun f, e1, σp) in
letb c1, σp, σc = p↪→c(e1, σp, σc) in
letb p2, σp = EpJ tuple(e2, . . . , en) Kσp in
letb c2, σp, σc = p↪→c(p2, σp, σc) in
letb cf , σc = EcJ f(c1, c2) Kσc in
letb cf , σc = out_check(cf , σc) in
c↪→p(cf , σp, σc)

Fig. 8. C call from Python

Ep×cJ PyObject_CallObject(f, a) K(σp, σc) =

letb fp, σp, σc = c↪→p(f, σp, σc) in
letb ap, σp, σc = c↪→p(a, σp, σc) in
let rp, σp = EpJ fp(∗ap) Kσp in
if σp = (cur ,_,_) then p↪→c(rp, σp, σc)

else let exn e, εp, ηp = σp in
letb ec, σp, σc = p↪→c(e, (cur , εp, ηp), σc) in
NULL, σp,ScJ PyErr_SetNone(ec) Kσc

Fig. 9. Python call from C

ation of the Python call, we revert to the cur flow token and pass the exception
object e through the boundary. The result of the call will be NULL, and the
exception will be set on the C side by calling PyErr_SetNone.

Python exceptions in C. Python exceptions may be raised from the C code
using the PyErr_SetNone builtin. In the Python interpreter, this sets a flag
in a structure describing the interpreter’s state. We model this by setting a
global variable exc with the Python object passed as an argument. Additional
functions such as PyErr_Occurred checking if an exception has been raised and
PyErr_Clear removing raised exceptions are modeled by accessing and setting
this same global variable.

Conversion builtins of the API. We show conversion functions from C long
to Python integers and back in Figure 10. Converting a C long of value vc to a
Python integer is done by calling the integer constructor in the Python semantics,
and applying the boundary afterwars. To perform the other conversion, we apply
the boundary function to the C value. Then, we check if the corresponding
Python value vp is an integer by looking into the Python heap. If that is the
case, we check that this integer fits in a C long (Python integers are unbounded).
Otherwise we raise an OverflowError and the function returns -1. A TypeError
exception is raised and the function returns -1 if the object is not an integer.

Thanks to the definition of builtins such as PyLong_AsLong, other builtins
calling this function can be analyzed directly using their source code from the
Python interpreter’s implementation. For example, when PyArg_ParseTuple en-
counters an 'i' char in its conversion string, it executes the code shown in Fig-
ure 11.6 As explained in our example from Section 2, it first calls PyLong_AsLong
and converts the long to int checking for additional overflows. Our analyzer is
able to analyze this piece of code directly. In our implementation, about half of

6PyArg_ParseTuple is defined as stub (just as PyLong_AsLong is), but the case of
integers is delegated to the interpreter’s implementation shown in Figure 11.

14 R. Monat, A. Ouadjaout and A. Miné

Ep×cJ PyLong_FromLong(vc) K(σp, σc) =
p↪→c (EpJ int(vc) K(σp), σc)

Ep×cJ PyLong_AsLong(vc) K(σp, σc) =

let vp, σp, σc = c↪→p(vc, σp, σc) in
if σ.ηp = int(i) then

if i ∈ [−263, 263 − 1] then i, σp, σc

else − 1, σp,ScJ PyErr_SetNone(PyExc_OverflowError) Kσc

else − 1, σp,ScJ PyErr_SetNone(PyExc_TypeError) Kσc

Fig. 10. Conversion from Python builtin integers to C long

1 long ival = PyLong_AsLong(obj);
2 if(ival == -1 && PyErr_Occurred()) {
3 return 0;
4 } else if (ival > INT_MAX) {
5 PyErr_SetString(PyExc_OverflowError,
6 "signed integer is greater than maximum");
7 return 0;
8 }

10 else if (ival < INT_MIN) {
11 PyErr_SetString(PyExc_OverflowError,
12 "signed integer is less than minimum");
13 return 0;
14 } else {
15 *result = ival;
16 return 1;
17 }

Fig. 11. Python integer to C int conversion as done by PyArg_ParseTuple

the builtins use the original C implementation; their code is around 650 lines
long.

Threats to validity. Our goal is to analyze Python programs with native C
modules and detect all runtime errors that may happen. Assuming that those
C modules use Python’s API rather than directly modify the internal represen-
tation of builtins seems reasonable when analyzing third-party modules. This is
the recommended approach for developers, as it eases maintenance of the code-
base since API changes are not frequent and documented. Our analysis is able
to detect if a program does not use the Python API and tries to modify a builtin
Python object directly.

This concrete semantics is already high-level. A lower-level semantics where
implementation details of builtins are exposed would be much more complex. It
would not benefit our analysis, which aims at detecting runtime errors in the
user’s codebase. We have established this semantics by reading the code of the
reference Python interpreter. Proving that our semantics is a sound abstraction
of such lower-level semantics is left as future work.

4 Abstract Semantics

Concrete states use numeric values in different places (e.g, the C state has
machine numbers, pointer offsets and resource sizes). All these values will be

A Multilanguage Static Analysis of Python Programs with C Extensions 15

rel_count.py
1 c = counter.Counter()
2 for i in range(randint(1, 100)):
3 c.incr()
4 r = c.counter
5 assert(r == i+1)

Fig. 12. Example code where relationality between C and Python improves precision

centralized in a common numeric domain in the abstract state. This central-
ization allows expressing invariants between all those numeric variables, pos-
sibly improving the precision. We show a generic construction of the abstract
multilanguage state. We assume the abstract semantics of Python and C are
provided through E#

p J · K,E#
c J · K. These can be instantiated in practice using

previous works [37, 34]. We assume that each language’s abstract state relies
on an address allocation abstraction (such as the callsite abstraction or the re-
cency abstraction [2]) and a numeric abstraction (such as intervals, octagons,
…). We write Σ]

u the cartesian product of these two abstractions. The abstract
Python (resp. C) state can then be decomposed as a product Σ]

p = Σ̃]
p × Σ]

u

(resp. Σ]
c = Σ̃]

c×Σ]
u). The multilanguage abstract state consists in the cartesian

product of the Python and C abstract states, where the address allocation and
numeric states are shared: Σ]

p×c = Σ̃]
p × Σ̃]

c ×Σ]
u.

Just as the concrete semantics builds upon the underlying C and Python
semantics, so does our abstract semantics. The abstract semantics of the bound-
ary operators is structurally similar to the concrete ones (each concrete operator
is replaced with its abstract counterpart). We show this transformation on the
abstract semantics of PyLong_FromLong (to be compared with Figure 10).

E#
p×c

J PyLong_FromLong(vc) K(σ]
p, σ

]
c) =

p↪→c
]
(
E#
p J int(vc) K(σ]

p), σ
]
c

)
Sharing the address allocation and numeric abstractions allows expressing

relational invariants between the languages. In the example in Figure 12, a non-
relational analysis would be able to infer that 0 ≤ i ≤ 99, but it cannot infer
that the number of calls to incr is finite. It would thus infer that −231 ≤ r <
231, report an overflow error and be unable to prove the assertion at the end.
Note that the value of r originates from the C value of the count field in the
instance defined in c. With a relational analysis where C and Python variables
are shared in the numeric domains, it is possible to infer that num(@int) + 1 =
num(H@Counter, 16, s32I). num(@int) is the numeric value of the integer bound
to i. num(H@Counter, 16, s32I) is the numeric value of the Counter instance
(i.e., the value of count in the Counter struct, here represented as the cell [31]
referenced by the Counter instance, at offset 16 being a 32-bit integer). Our
analyzer is able to prove that the assertion holds using the octagon abstract
domain [32].

Soundness. Assuming the underlying abstract semantics of Python and C are
sound, the only cases left in the soundness proof are those of the operators

16 R. Monat, A. Ouadjaout and A. Miné

working at the boundary. Since the abstract semantics of those operators is in
point-to-point correspondence with the concrete semantics, the soundness proof
is straightforward.

5 Experimental Evaluation

Implementation. We have implemented our multilanguage analysis within the
open-source, publicly-available static analysis framework called Mopsa [18, 19].
A specific feature of Mopsa is to provide loosely-coupled abstract domains that
the user combines through a configuration file to define the analysis. We were
able to reuse off-the-shelf value analyses of C programs [37] and Python programs
[34] already implemented into Mopsa. The only modification needed was to add
a multilanguage domain, implementing the semantics of the operators at the
boundary, just as our semantics (both concrete and abstract) do.

The configuration for the multilanguage analysis is shown in Figure 13. A
configuration is a directed acyclic graph, where nodes are either domains or do-
main combinators. Domains can have their own local abstract state. The global
abstract state is the product of these local states. Domains can also be itera-
tors over language constructions. Each analyzed expression (or statement) flows
from the top domain of the configuration to the bottom until one domain han-
dles it. The multilanguage domain is at the top. It dispatches statements not
operating at the boundary to the underlying Python or C analysis. The Python
and C analyses are in a cartesian product, ensuring that when a statement goes
through them, it will be handled by only one of the two sub-configurations. An
example of stateful domain is “C.pointers”, which keeps points-to information.
“Py.exceptions” is an example of iterator domain. It handles the raise and try
operators of Python. Both Python and C analyses share an underlying “uni-
versal” analysis, to which they can delegate some statements. This “universal”
part provides iterators for intra- and inter-procedural statements, as well as the
address allocation and numeric abstractions. The numeric abstraction displayed
here only uses intervals, but it can be changed to a reduced product between a
relational domain and intervals, for example.

This multilanguage domain consists in 2,500 lines of OCaml code (measured
using the cloc tool), implementing 64 builtin functions such as the ones pre-
sented in the concrete semantics. This is small compared to the 11,700 lines of
OCaml for the C analysis and 12,600 lines of OCaml for the Python analysis.
These domains rely on “universal” domains representing 5,600 lines of OCaml
and a common framework of 13,200 lines of OCaml. We also reuse the C imple-
mentation of 60 CPython functions as-is.

Corpus selection. In order to perform our experimental evaluation, we se-
lected six popular Python libraries from GitHub (having in average 412 stars).
These libraries are written in C and Python and do not have external de-
pendencies. The noise library [10] aims at generating Perlin noise. Libraries

https://github.com/caseman/noise

A Multilanguage Static Analysis of Python Programs with C Extensions 17

CPython

×

Py.program # Py.desugar # Py.exceptions #

Py.libraries # Py.objects # Py.data_model #

×

Py.Environment Py.Attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

C.program # C.desugar # C.goto #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.intraproc # U.loops # U.interproc #

U.recency

◦

U.intervals

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Python specific

Fig. 13. Multilanguage configuration in Mopsa

levenshtein, ahocorasick, cdistance [15, 36, 30] implement various string-
related algorithms. llist [17] defines linked-list objects (both single and double
ones). bitarray [41] provides an implementation for efficient arrays of bits. Our
analysis is context-sensitive in order to perform a precise value analysis. Thus,
we needed some client code to analyze those libraries. We decided to analyze the
tests defined by those libraries: they should cover most usecases of the library,
and ensure that the transition between Python and C are frequent, which is ideal
to stress-test our analysis. Some libraries (noise, bitarray, and llist) come
with example programs with less than 50 lines of code that we analyze within
15 seconds. We have not been able to find applications with a well-defined entry
point using those libraries (or they had big dependencies such as numpy). Our
experimental evaluation thus focuses on the analysis of the libraries’ tests.

Analysis results. We show the results of our analysis in Table 2. The column
|C| (resp. |Py|) shows the lines of code in C (resp. Python), measured using the
cloc tool. The Python code corresponds mainly to the tests. It may also wrap C
classes in custom classes. For example, frozenbitarray is defined in Python, on
top of the bitarray class. The “tests” column shows the number of tests we are
able to analyze, compared to the total number of tests defined by the library.
The CLOCK column shows the time taken to analyze all the tests. Columns Check-Circlec

(resp. Check-Circlep) show the selectivity of our analysis – the number of safe operations

https://github.com/ztane/python-Levenshtein/
https://github.com/WojciechMula/pyahocorasick
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/ilanschnell/bitarray
https://github.com/caseman/noise
https://github.com/ilanschnell/bitarray
https://github.com/ajakubek/python-llist

18 R. Monat, A. Ouadjaout and A. Miné

Table 2. Analysis results of libraries using their unit tests

Library |C| |Py| Tests CLOCK Check-Circlec Check-Circlep Assert. Py!C

noise 722 675 15/15 19s 99.6% (4952) 100.0% (1738) 0/21 6.6
ahocorasick 3541 1336 46/92 59s 93.1% (1785) 98.0% (4937) 30/88 5.4
levenshtein 5441 357 17/17 1.6m 79.9% (3106) 93.2% (1719) 0/38 2.7
cdistance 1433 912 28/28 1.9m 95.3% (1832) 98.3% (11884) 88/207 8.6
llist 2829 1686 167/194 4.3m 99.0% (5311) 98.8% (30944) 235/691 51.7
bitarray 3244 2597 159/216 4.6m 96.3% (4496) 94.6% (21070) 97/374 14.9

compared to the total number of runtime error checks, the latter being also
displayed in parentheses – performed by the analyzer for C (resp. Python). The
selectivity is computed by Mopsa during the analysis. The C analysis checks
for runtime errors including integer overflows, divisions by zero, invalid memory
accesses and invalid pointer operations. The Python analysis checks also for
runtime errors, which include the AttributeError, TypeError, ValueError
exceptions. Runtime errors happening at the boundary are considered as Python
errors since they will be raised as Python SystemError exceptions. The second to
last column shows the number of functional properties (expressed as assertions)
defined by the tests that our analyzer is able to prove correct automatically. The
last column shows the number of transitions between the analyzed Python code
and the C code, averaged per test.

We observe that Mopsa is able to analyze these libraries in a few minutes
with high selectivity for the detection of Python and C runtime errors. Our
analysis is able to detect some bugs that were previously known. For example, the
ahocorasick module forgets to initialize some of its iterator classes, and some
functions of the bitarray module do not set an exception when they return an
erroneous flag, raising a SystemError exception. We have not manually checked
if unknown bugs were detected by our analysis. We have instrumented Mopsa
to display the number of crossings (from Python to C, or C to Python). The
average number of crossings per test is shown in the last column of Table 2.
The minimal number of crossings is one per test. Thus these tests seem correct
to benchmark our approach since they all alternate calls to native C code and
Python code.

The multilanguage analysis is limited by the current precision level of the un-
derlying C and Python analyses but would naturally benefit immediately from
any improvements in these. However, we focused on the multilanguage domains
only in this study. We leave as future work the improvements required indepen-
dently on the C and Python analyses for our benchmarks. We now describe a
few areas where the analysis could benefit from improvements. Mopsa is unable
to support some tests for now, either because they use unsupported Python
libraries or because the C analysis is too imprecise to resolve some pointers.
The unsupported tests of the ahocorasick analysis are due to imprecisions in
the C analysis, which is not able to handle a complex trie data structure being
stored in a dynamic array and reallocated over and over again. In llist, some

https://github.com/caseman/noise
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/ilanschnell/bitarray
https://github.com/WojciechMula/pyahocorasick
https://github.com/ilanschnell/bitarray
https://github.com/WojciechMula/pyahocorasick
https://github.com/ajakubek/python-llist

A Multilanguage Static Analysis of Python Programs with C Extensions 19

tests use the getrefcount method of the sys which is unsupported (and related
to CPython’s reference-based garbage collector, which we do not support). In
addition, some tests make pure-Python classes inherit from C classes: this is cur-
rently not supported in our implementation, but it is an implementation detail
that will be fixed. For the bitarray tests, tests are unsupported because they
use the unsupported pickle module performing object serialization, or they use
the unsupported sys.getsizeof method, or they perform some unsupported
input-output operations in Python. In addition, the C analysis is too imprecise
to resolve some pointers in 18 tests.

The selectivity is lower in the C analysis of levenshtein, where dynamic
arrays of structures are accessed in loops: the first access at tab[i].x may raise
an alarm and continue the analysis assuming that i is now a valid index access.
However, subsequent accesses to tab[i].y, tab[i].z will also raise alarms as
the non-relational numeric domain is unable to express that i is a valid index
access. Proving the functional properties is more challenging, and not the main
goal of our analysis, which aims detecting runtime errors. For example, the asser-
tions of the noise library check that the result of complex, iterative non-linear
arithmetic lies in the interval [−1, 1]. Some assertions in the llist or bitarray
library aim at checking that converting their custom container class to a list
preserves the elements. Due to the smashing abstraction [3] of the Python lists,
we cannot prove these assertions.

6 Related Work

Native code analysis. Some works focus on analyzing native C code in the
context of language interoperability, without analyzing the host language. Tan
and Croft [42] perform an empirical study of native code use in Java and provide
a classification by bug patterns; a similar study has been performed by Hu and
Zhang [16] for the Python/C API. Kondoh and Onodera [20] check that native
calls to Java methods should handle raised exceptions using a typestate analy-
sis. Li and Tan [23] ensure that the native control-flow is correctly interrupted
when a Java exception is raised. The work of Li and Tan [24, 25] infers which
Java exceptions may be raised by JNI code, allowing the exception type-safety
property of Java programs to be extended to the JNI. CpyChecker [27] is a GCC
plugin searching for common erroneous patterns in C code using the CPython
API. Two works [26, 28] aim at detecting reference counting errors in C code
using the CPython API. Brown et al. [4] define specialized analyses for specific
patterns of C++ interoperability that may jeopardize type or memory safety of
JavaScript. Contrary to these works, we analyze both host and guest languages.

Multilanguage semantics. The seminal work of Matthews and Findler [29] de-
fines the first semantics of multilanguage systems, using the notion of boundaries
to model conversion between languages. Buro and Mastroeni [7] generalize this
construction using an algebraic framework. We use a similar notion of boundary
in our concrete semantics.

https://github.com/ilanschnell/bitarray
https://github.com/ztane/python-Levenshtein/
https://github.com/caseman/noise
https://github.com/ajakubek/python-llist
https://github.com/ilanschnell/bitarray

20 R. Monat, A. Ouadjaout and A. Miné

Multilanguage analyses. Buro et al. [6] define a theory based on abstract
interpretation to combine analyses of different languages, and show how to lift
the soundness property to the multilanguage setting. They provide an example
of multilanguage setting where they combine a toy imperative language with a
bit-level arithmetic language. The notion of boundary functions used in their
work performs a full translation from the state of one language to the other.
Our semantics works on the product of the states, although it can be seen as
an abstraction of the semantics of C and Python, where the boundary performs
a full state conversion (but the boundary from Python to C would be a con-
cretization). From an implementation standpoint, our approach avoids costly
state conversions at the boundary and allows sharing some abstract domains.

Chipounov et al. [8] perform symbolic execution of binaries, thus avoiding
language considerations. Their approach is extended by the work of Bucur et al.
[5], which supports any interpreted language by performing symbolic execution
over the interpreter. Our approach is more costly to implement since we do not
automatically lift the interpreter’s code to obtain our analyzer. Thanks to its
higher-level, we think our approach should be more precise and efficient.

The next works perform multilanguage analyses by translating specific effects
of what native functions do (they usually generate a summary using a bottom-
up analysis) to the host language. This allows removing the native code and use
existing analyses of the host language. Tan and Morrisett [43] compile C code
into an extended JVML syntax form, allowing the use of the bug-finding tool
Jlint afterwards. Furr and Foster [12, 13, 14] perform inference of OCaml and
Java types in C FFI code, which they crosscheck with the types used in the
client OCaml/Java code. They assume there are no out-of-bounds accesses and
no type casting in the C code. An inter-language, bottom-up taint analysis for
Java and native binary code in the setting of Android applications is proposed
by Wei et al. [45]. Lee et al. [22] aim at detecting wrong forein function calls
and mishandling of Java exceptions in Java/JNI code. They extract summaries
of the Java callbacks and field accesses from the JNI code using Infer, transform
these summaries into Java code, and call the FlowDroid analyzer on the whole.
Contrary to these works, our analyzer supports both languages, and it switches
between languages just as the real code does. The properties we target require
precise context-sensitive value analyses that are diffcult to perform bottom-up.

Library analyses. Previous work aim at analyzing libraries with no access to
their client code [1, 38] using a “most-general client”. The work of Kristensen and
Møller [21] refines the notion of most-general client in the setting of dynamic
programming languages. However, it focuses on libraries where functions are
typed. Python libraries are not explicitly typed. Extending their work to our
untyped, multilanguage setting is left as future work.

A Multilanguage Static Analysis of Python Programs with C Extensions 21

7 Conclusion

This article presents a multilanguage analysis able to infer runtime errors in
Python code using native C extensions. Our analyzer is able to reuse value anal-
yses of Python and C off-the-shelf. It shares the address allocation and numeric
abstractions between the Python and C abstract domains. We are able to ana-
lyze within a few minutes real-world Python libraries written in C and having
up to 5,800 lines of code. To the best of our knowledge, we have implemented
the first static analyzer able to soundly detect runtime errors in multilanguage
programs.

Future work includes extending our implementation to analyze the standard
Python library and large Python applications. This will require handling more
dependencies, having a relational analysis that scales, and addressing the pre-
cision limitations of the underlying C and Python analyses. We plan to instru-
ment our implementation to verify (or infer) type annotations of the standard
library provided in the typeshed [44] project. It would also be interesting to
target multilanguage-specific safety properties (such as correct garbage collec-
tion counts). Another future work is to try our approach in other multilanguage
settings (such as Java/C).

Bibliography

[1] Allen, N., Krishnan, P., Scholz, B.: Combining type-analysis with points-
to analysis for analyzing Java library source-code. In: SOAP@PLDI, ACM
(2015)

[2] Balakrishnan, G., Reps, T.W.: Recency-abstraction for heap-allocated stor-
age. In: SAS, Springer (2006)

[3] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Monniaux, D., Rival, X.: Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded software. In:
The Essence of Computation, Lecture Notes in Computer Science, vol. 2566,
pp. 85–108, Springer (2002)

[4] Brown, F., Narayan, S., Wahby, R.S., Engler, D.R., Jhala, R., Stefan, D.:
Finding and preventing bugs in JavaScript bindings. In: SP, IEEE Computer
Society (2017)

[5] Bucur, S., Kinder, J., Candea, G.: Prototyping symbolic execution engines
for interpreted languages. In: ASPLOS, pp. 239–254, ACM (2014)

[6] Buro, S., Crole, R.L., Mastroeni, I.: On multi-language abstraction - towards
a static analysis of multi-language programs. In: SAS, Springer (2020)

[7] Buro, S., Mastroeni, I.: On the multi-language construction. In: ESOP,
Springer (2019)

[8] Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in-vivo
multi-path analysis of software systems. In: ASPLOS, pp. 265–278, ACM
(2011)

22 R. Monat, A. Ouadjaout and A. Miné

[9] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: POPL, ACM (1977)

[10] Duncan, C.: Native-code and shader implementations of perlin noise for
Python (2021), URL https://github.com/caseman/noise

[11] Fromherz, A., Ouadjaout, A., Miné, A.: Static value analysis of Python
programs by abstract interpretation. In: NFM, Springer (2018)

[12] Furr, M., Foster, J.S.: Checking type safety of foreign function calls. In:
PLDI, ACM (2005)

[13] Furr, M., Foster, J.S.: Polymorphic type inference for the JNI. In: ESOP,
Springer (2006)

[14] Furr, M., Foster, J.S.: Checking type safety of foreign function calls. ACM
Trans. Program. Lang. Syst. (4) (2008)

[15] Haapala, A., Määttä, E., CD, J., Ohtamaa, M., Necas, D.: Levenshtein
Python C extension module (2021), URL https://github.com/ztane/
python-Levenshtein/

[16] Hu, M., Zhang, Y.: The Python/C API: evolution, usage statistics, and bug
patterns. In: SANER, IEEE (2020)

[17] Jakubek, A., Gałczyński, R.: Linked lists for CPython (2021), URL https:
//github.com/ajakubek/python-llist

[18] Journault, M., Miné, A., Monat, R., Ouadjaout, A.: Combinations of
reusable abstract domains for a multilingual static analyzer. In: VSTTE,
Springer (2019)

[19] Journault, M., Miné, A., Monat, R., Ouadjaout, A.: MOPSA: Modular
Open Platform for Static Analysis. (2021), URL https://gitlab.com/
mopsa/mopsa-analyzer

[20] Kondoh, G., Onodera, T.: Finding bugs in Java native interface programs.
In: ISSTA, ACM (2008)

[21] Kristensen, E.K., Møller, A.: Reasonably-most-general clients for JavaScript
library analysis. In: ICSE, IEEE / ACM (2019), URL https://doi.org/
10.1109/ICSE.2019.00026

[22] Lee, S., Lee, H., Ryu, S.: Broadening horizons of multilingual static analysis:
Semantic summary extraction from C code for JNI program analysis. In:
ASE, IEEE (2020)

[23] Li, S., Tan, G.: Finding bugs in exceptional situations of JNI programs. In:
CCS, ACM (2009)

[24] Li, S., Tan, G.: JET: exception checking in the Java native interface. In:
SPLASH, ACM (2011)

[25] Li, S., Tan, G.: Exception analysis in the Java Native Interface. Sci. Comput.
Program. (2014)

[26] Li, S., Tan, G.: Finding reference-counting errors in Python/C programs
with affine analysis. In: ECOOP, Springer (2014)

[27] Malcolm, D.: A static analysis tool for CPython extension code
(2018), URL https://gcc-python-plugin.readthedocs.io/en/latest/
cpychecker.html

https://github.com/caseman/noise
https://github.com/ztane/python-Levenshtein/
https://github.com/ztane/python-Levenshtein/
https://github.com/ajakubek/python-llist
https://github.com/ajakubek/python-llist
https://gitlab.com/mopsa/mopsa-analyzer
https://gitlab.com/mopsa/mopsa-analyzer
https://doi.org/10.1109/ICSE.2019.00026
https://doi.org/10.1109/ICSE.2019.00026
https://gcc-python-plugin.readthedocs.io/en/latest/cpychecker.html
https://gcc-python-plugin.readthedocs.io/en/latest/cpychecker.html

A Multilanguage Static Analysis of Python Programs with C Extensions 23

[28] Mao, J., Chen, Y., Xiao, Q., Shi, Y.: RID: finding reference count bugs with
inconsistent path pair checking. In: ASPLOS, ACM (2016)

[29] Matthews, J., Findler, R.B.: Operational semantics for multi-language pro-
grams. ACM Trans. Program. Lang. Syst. (3) (2009)

[30] Meyer, M.: Distance library (2021), URL https://github.com/doukremt/
distance

[31] Miné, A.: Field-sensitive value analysis of embedded C programs with union
types and pointer arithmetics. In: LCTES, ACM (2006)

[32] Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1),
31–100 (2006)

[33] Monat, R., Ouadjaout, A., Miné, A.: Static type analysis by abstract in-
terpretation of Python programs. In: ECOOP, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020)

[34] Monat, R., Ouadjaout, A., Miné, A.: Value and allocation sensitivity in
static Python analyses. In: SOAP@PLDI, ACM (2020)

[35] Monat, R., Ouadjaout, A., Miné, A.: A Multi-Language Static Analysis
of Python Programs with Native C Extensions (Jul 2021), URL https:
//doi.org/10.5281/zenodo.5141314

[36] Muła, W., Ombredanne, P.: Pyahocorasick library (2021), URL https://
github.com/WojciechMula/pyahocorasick

[37] Ouadjaout, A., Miné, A.: A library modeling language for the static analysis
of C programs. In: SAS, Springer (2020)

[38] Rinetzky, N., Poetzsch-Heffter, A., Ramalingam, G., Sagiv, M., Yahav, E.:
Modular shape analysis for dynamically encapsulated programs. In: ESOP,
Springer (2007)

[39] van Rossum, G., Lehtosalo, J., Łukasz Langa: Python Enhancement Pro-
posal 484 (2021), URL https://www.python.org/dev/peps/pep-0484/

[40] van Rossum, G., the Python development team: Python/C API Reference
Manual (2021), URL https://docs.python.org/3.8/c-api/index.html

[41] Schnell, I.: Bitarray library (2021), URL https://github.com/
ilanschnell/bitarray

[42] Tan, G., Croft, J.: An empirical security study of the native code in the
JDK. In: USENIX, USENIX Association (2008)

[43] Tan, G., Morrisett, G.: Ilea: inter-language analysis across Java and C. In:
OOPSLA, ACM (2007)

[44] Typeshed contributors: Typeshed (2021), URL https://github.com/
python/typeshed/

[45] Wei, F., Lin, X., Ou, X., Chen, T., Zhang, X.: JN-SAF: precise and effi-
cient NDK/JNI-aware inter-language static analysis framework for security
vetting of Android applications with native code. In: SIGSAC, ACM (2018)

https://github.com/doukremt/distance
https://github.com/doukremt/distance
https://doi.org/10.5281/zenodo.5141314
https://doi.org/10.5281/zenodo.5141314
https://github.com/WojciechMula/pyahocorasick
https://github.com/WojciechMula/pyahocorasick
https://www.python.org/dev/peps/pep-0484/
https://docs.python.org/3.8/c-api/index.html
https://github.com/ilanschnell/bitarray
https://github.com/ilanschnell/bitarray
https://github.com/python/typeshed/
https://github.com/python/typeshed/

	A Multilanguage Static Analysis ofPython Programs with Native C Extensions

