
AMultilanguage Static Analysis of
Python ProgramswithNative C Extensions

Raphaël Monat, Abdelraouf Ouadjaout, Antoine Miné

rmonat.fr/sas21

Static Analysis Symposium
18 October 2021

rmonat.fr/sas21

Introduction

Static Program Analysis
sum.py

1 def sum(l):
2 s = 0
3 for x in l:
4 s += x
5 return s
6
7 r1 = sum([1, 2, 3])
8 r2 = sum(['a', 'b', 'c'])

TypeError: unsupported operand type(s) for ’+’: ’int’ and ’str’

argslen.c

1 #include <string.h>
2
3 int main(int argc, char *argv[]) {
4 int i = 0;
5 for (char **p = argv; *p; p++) {
6 strlen(*p); // valid string
7 i++; // no overflow
8 }
9 return 0;
10 }

No alarm

Specifications of the analyzer

Inference of program properties such as the absence of run-time errors.
Automatic no expert knowledge required.
Semantic based on a formal modelization of the language.
Sound cover all possible executions.

1

Python

I #2 language on Github1,

I Object oriented,
I Dynamic typing,
I Operator redefinition,
I Introspection operators,
I Dynamic object structure,
I eval.

a1 = eval e1; a2 = eval e2

has_field(a1,__add__)?
No

Yes

has_field(a2,__radd__)
&& type(a1) < type(a2)?

Yes

No

a3 = call a1’s __add__ on a1,a2

a3 == NotImplemented?

No

Yes

Result is a3

has_field(a2,__radd__)
&& type(a1) 6= type(a2)?

Yes

No

a3 = call a2’s __radd__ on a1,a2

a3 == NotImplemented?

Yes

No

Type Error

1https://octoverse.github.com/#top-languages 2

https://octoverse.github.com/#top-languages

Python

I #2 language on Github1,
I Object oriented,

I Dynamic typing,
I Operator redefinition,
I Introspection operators,
I Dynamic object structure,
I eval.

a1 = eval e1; a2 = eval e2

has_field(a1,__add__)?
No

Yes

has_field(a2,__radd__)
&& type(a1) < type(a2)?

Yes

No

a3 = call a1’s __add__ on a1,a2

a3 == NotImplemented?

No

Yes

Result is a3

has_field(a2,__radd__)
&& type(a1) 6= type(a2)?

Yes

No

a3 = call a2’s __radd__ on a1,a2

a3 == NotImplemented?

Yes

No

Type Error

1https://octoverse.github.com/#top-languages 2

https://octoverse.github.com/#top-languages

Python

I #2 language on Github1,
I Object oriented,
I Dynamic typing,

I Operator redefinition,
I Introspection operators,
I Dynamic object structure,
I eval.

a1 = eval e1; a2 = eval e2

has_field(a1,__add__)?
No

Yes

has_field(a2,__radd__)
&& type(a1) < type(a2)?

Yes

No

a3 = call a1’s __add__ on a1,a2

a3 == NotImplemented?

No

Yes

Result is a3

has_field(a2,__radd__)
&& type(a1) 6= type(a2)?

Yes

No

a3 = call a2’s __radd__ on a1,a2

a3 == NotImplemented?

Yes

No

Type Error

1https://octoverse.github.com/#top-languages 2

https://octoverse.github.com/#top-languages

Python

I #2 language on Github1,
I Object oriented,
I Dynamic typing,
I Operator redefinition,

I Introspection operators,
I Dynamic object structure,
I eval.

a1 = eval e1; a2 = eval e2

has_field(a1,__add__)?
No

Yes

has_field(a2,__radd__)
&& type(a1) < type(a2)?

Yes

No

a3 = call a1’s __add__ on a1,a2

a3 == NotImplemented?

No

Yes

Result is a3

has_field(a2,__radd__)
&& type(a1) 6= type(a2)?

Yes

No

a3 = call a2’s __radd__ on a1,a2

a3 == NotImplemented?

Yes

No

Type Error

1https://octoverse.github.com/#top-languages 2

https://octoverse.github.com/#top-languages

Python

I #2 language on Github1,
I Object oriented,
I Dynamic typing,
I Operator redefinition,
I Introspection operators,

I Dynamic object structure,
I eval.

a1 = eval e1; a2 = eval e2

has_field(a1,__add__)?
No

Yes

has_field(a2,__radd__)
&& type(a1) < type(a2)?

Yes

No

a3 = call a1’s __add__ on a1,a2

a3 == NotImplemented?

No

Yes

Result is a3

has_field(a2,__radd__)
&& type(a1) 6= type(a2)?

Yes

No

a3 = call a2’s __radd__ on a1,a2

a3 == NotImplemented?

Yes

No

Type Error

1https://octoverse.github.com/#top-languages 2

https://octoverse.github.com/#top-languages

Python

I #2 language on Github1,
I Object oriented,
I Dynamic typing,
I Operator redefinition,
I Introspection operators,
I Dynamic object structure,

I eval.

a1 = eval e1; a2 = eval e2

has_field(a1,__add__)?
No

Yes

has_field(a2,__radd__)
&& type(a1) < type(a2)?

Yes

No

a3 = call a1’s __add__ on a1,a2

a3 == NotImplemented?

No

Yes

Result is a3

has_field(a2,__radd__)
&& type(a1) 6= type(a2)?

Yes

No

a3 = call a2’s __radd__ on a1,a2

a3 == NotImplemented?

Yes

No

Type Error

1https://octoverse.github.com/#top-languages 2

https://octoverse.github.com/#top-languages

Python

I #2 language on Github1,
I Object oriented,
I Dynamic typing,
I Operator redefinition,
I Introspection operators,
I Dynamic object structure,
I eval.

a1 = eval e1; a2 = eval e2

has_field(a1,__add__)?
No

Yes

has_field(a2,__radd__)
&& type(a1) < type(a2)?

Yes

No

a3 = call a1’s __add__ on a1,a2

a3 == NotImplemented?

No

Yes

Result is a3

has_field(a2,__radd__)
&& type(a1) 6= type(a2)?

Yes

No

a3 = call a2’s __radd__ on a1,a2

a3 == NotImplemented?

Yes

No

Type Error

1https://octoverse.github.com/#top-languages 2

https://octoverse.github.com/#top-languages

Python

I #2 language on Github1,
I Object oriented,
I Dynamic typing,
I Operator redefinition,
I Introspection operators,
I Dynamic object structure,
I eval.

a1 = eval e1; a2 = eval e2

has_field(a1,__add__)?
No

Yes

has_field(a2,__radd__)
&& type(a1) < type(a2)?

Yes

No

a3 = call a1’s __add__ on a1,a2

a3 == NotImplemented?

No

Yes

Result is a3

has_field(a2,__radd__)
&& type(a1) 6= type(a2)?

Yes

No

a3 = call a2’s __radd__ on a1,a2

a3 == NotImplemented?

Yes

No

Type Error

1https://octoverse.github.com/#top-languages 2

https://octoverse.github.com/#top-languages

Combining C and Python

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy),
I To provide library bindings (pygit2).

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C),
I Different object representations (Python objects, C structs),
I Different runtime-errors (exceptions in Python),
I Garbage collection.

3

Combining C and Python

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy),

I To provide library bindings (pygit2).

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C),
I Different object representations (Python objects, C structs),
I Different runtime-errors (exceptions in Python),
I Garbage collection.

3

Combining C and Python

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy),
I To provide library bindings (pygit2).

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C),
I Different object representations (Python objects, C structs),
I Different runtime-errors (exceptions in Python),
I Garbage collection.

3

Combining C and Python

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy),
I To provide library bindings (pygit2).

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C),
I Different object representations (Python objects, C structs),
I Different runtime-errors (exceptions in Python),
I Garbage collection.

3

Combining C and Python

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy),
I To provide library bindings (pygit2).

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C),

I Different object representations (Python objects, C structs),
I Different runtime-errors (exceptions in Python),
I Garbage collection.

3

Combining C and Python

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy),
I To provide library bindings (pygit2).

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C),
I Different object representations (Python objects, C structs),

I Different runtime-errors (exceptions in Python),
I Garbage collection.

3

Combining C and Python

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy),
I To provide library bindings (pygit2).

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C),
I Different object representations (Python objects, C structs),
I Different runtime-errors (exceptions in Python),

I Garbage collection.

3

Combining C and Python

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy),
I To provide library bindings (pygit2).

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C),
I Different object representations (Python objects, C structs),
I Different runtime-errors (exceptions in Python),
I Garbage collection.

3

Outline

1 Introduction

2 A Concrete Example

3 Concrete Multilanguage Semantics

4 Mopsa, a Multilanguage Analyzer

5 Experimental Evaluation

6 Conclusion

4

A Concrete Example

Combining C and Python – Counter Example
counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

I power ≤ 30⇒ r = 2power

I power = 31⇒ r = −231

I 32 ≤ power ≤ 64: OverflowError:
signed integer is greater than maximum

I power ≥ 64: OverflowError:
Python int too large to convert to C long

5

Combining C and Python – Counter Example
counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

I power ≤ 30⇒ r = 2power

I power = 31⇒ r = −231

I 32 ≤ power ≤ 64: OverflowError:
signed integer is greater than maximum

I power ≥ 64: OverflowError:
Python int too large to convert to C long

5

Combining C and Python – Counter Example
counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

I power ≤ 30⇒ r = 2power

I power = 31⇒ r = −231

I 32 ≤ power ≤ 64: OverflowError:
signed integer is greater than maximum

I power ≥ 64: OverflowError:
Python int too large to convert to C long

5

Combining C and Python – Counter Example
counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

I power ≤ 30⇒ r = 2power

I power = 31⇒ r = −231

I 32 ≤ power ≤ 64: OverflowError:
signed integer is greater than maximum

I power ≥ 64: OverflowError:
Python int too large to convert to C long

5

How to analyze multilanguage programs?

Type annotations
class Counter:

def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors,
I Only types,
I Typeshed: type annotations for the standard library

,
used in previous work: Monat et al. “Static Type Analysis by Abstract
Interpretation of Python Programs”. ECOOP 2020.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations
class Counter:

def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors,

I Only types,
I Typeshed: type annotations for the standard library

,
used in previous work: Monat et al. “Static Type Analysis by Abstract
Interpretation of Python Programs”. ECOOP 2020.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations
class Counter:

def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors,
I Only types,

I Typeshed: type annotations for the standard library

,
used in previous work: Monat et al. “Static Type Analysis by Abstract
Interpretation of Python Programs”. ECOOP 2020.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations
class Counter:

def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors,
I Only types,
I Typeshed: type annotations for the standard library

,
used in previous work: Monat et al. “Static Type Analysis by Abstract
Interpretation of Python Programs”. ECOOP 2020.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations
class Counter:

def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors,
I Only types,
I Typeshed: type annotations for the standard library,
used in previous work: Monat et al. “Static Type Analysis by Abstract
Interpretation of Python Programs”. ECOOP 2020.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code
class Counter:

def __init__(self):
self.count = 0

def get(self):
return self.count

def incr(self, i=1):
self.count += i

I No integer wrap-around in Python,
I Some effects can’t be written in pure Python (e.g., read-only attributes).

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code
class Counter:

def __init__(self):
self.count = 0

def get(self):
return self.count

def incr(self, i=1):
self.count += i

I No integer wrap-around in Python,

I Some effects can’t be written in pure Python (e.g., read-only attributes).

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code
class Counter:

def __init__(self):
self.count = 0

def get(self):
return self.count

def incr(self, i=1):
self.count += i

I No integer wrap-around in Python,
I Some effects can’t be written in pure Python (e.g., read-only attributes).

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code,
I Not automatic: manual conversion,
I Not sound: some effects are not taken into account.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code,

I Not automatic: manual conversion,
I Not sound: some effects are not taken into account.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code,
I Not automatic: manual conversion,

I Not sound: some effects are not taken into account.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code,
I Not automatic: manual conversion,
I Not sound: some effects are not taken into account.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code,
I Not automatic: manual conversion,
I Not sound: some effects are not taken into account.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code,
I Not automatic: manual conversion,
I Not sound: some effects are not taken into account.

Our approach

I Analyze both the C and Python sources,

I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code,
I Not automatic: manual conversion,
I Not sound: some effects are not taken into account.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,

I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code,
I Not automatic: manual conversion,
I Not sound: some effects are not taken into account.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,

I Detect runtime errors in Python, in C, and at the boundary.

6

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code,
I Not automatic: manual conversion,
I Not sound: some effects are not taken into account.

Our approach

I Analyze both the C and Python sources,
I Switch from one language to the other just as the program does,
I Reuse previous analyses of C and Python,
I Detect runtime errors in Python, in C, and at the boundary. 6

Our approach
counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

7

Concrete Multilanguage Semantics

Multilanguage Semantics

Multilanguage Semantics

I Builds upon the Python and C semantics.

I Defines the API: calls between languages, value conversions.
I Shared heap, with disjoint, complementary views.
I Boundary functions when objects switch views.

Limitations

I Garbage collection not handled.
I C access to Python objects only through the API.
I Manual modelization from Python’s source code.

=⇒ details in the paper.

8

Multilanguage Semantics

Multilanguage Semantics

I Builds upon the Python and C semantics.
I Defines the API: calls between languages, value conversions.

I Shared heap, with disjoint, complementary views.
I Boundary functions when objects switch views.

Limitations

I Garbage collection not handled.
I C access to Python objects only through the API.
I Manual modelization from Python’s source code.

=⇒ details in the paper.

8

Multilanguage Semantics

Multilanguage Semantics

I Builds upon the Python and C semantics.
I Defines the API: calls between languages, value conversions.
I Shared heap, with disjoint, complementary views.

I Boundary functions when objects switch views.

Limitations

I Garbage collection not handled.
I C access to Python objects only through the API.
I Manual modelization from Python’s source code.

=⇒ details in the paper.

8

Multilanguage Semantics

Multilanguage Semantics

I Builds upon the Python and C semantics.
I Defines the API: calls between languages, value conversions.
I Shared heap, with disjoint, complementary views.
I Boundary functions when objects switch views.

Limitations

I Garbage collection not handled.
I C access to Python objects only through the API.
I Manual modelization from Python’s source code.

=⇒ details in the paper.

8

Multilanguage Semantics

Multilanguage Semantics

I Builds upon the Python and C semantics.
I Defines the API: calls between languages, value conversions.
I Shared heap, with disjoint, complementary views.
I Boundary functions when objects switch views.

Limitations

I Garbage collection not handled.
I C access to Python objects only through the API.
I Manual modelization from Python’s source code.

=⇒ details in the paper.

8

Multilanguage Semantics

Multilanguage Semantics

I Builds upon the Python and C semantics.
I Defines the API: calls between languages, value conversions.
I Shared heap, with disjoint, complementary views.
I Boundary functions when objects switch views.

Limitations

I Garbage collection not handled.

I C access to Python objects only through the API.
I Manual modelization from Python’s source code.

=⇒ details in the paper.

8

Multilanguage Semantics

Multilanguage Semantics

I Builds upon the Python and C semantics.
I Defines the API: calls between languages, value conversions.
I Shared heap, with disjoint, complementary views.
I Boundary functions when objects switch views.

Limitations

I Garbage collection not handled.
I C access to Python objects only through the API.

I Manual modelization from Python’s source code.

=⇒ details in the paper.

8

Multilanguage Semantics

Multilanguage Semantics

I Builds upon the Python and C semantics.
I Defines the API: calls between languages, value conversions.
I Shared heap, with disjoint, complementary views.
I Boundary functions when objects switch views.

Limitations

I Garbage collection not handled.
I C access to Python objects only through the API.
I Manual modelization from Python’s source code.

=⇒ details in the paper.

8

Multilanguage Semantics

Multilanguage Semantics

I Builds upon the Python and C semantics.
I Defines the API: calls between languages, value conversions.
I Shared heap, with disjoint, complementary views.
I Boundary functions when objects switch views.

Limitations

I Garbage collection not handled.
I C access to Python objects only through the API.
I Manual modelization from Python’s source code.

=⇒ details in the paper.
8

Mopsa, a Multilanguage Analyzer

Our Framework: MOPSA

Modular Open Platform for Static Analysis

I Multi-language support (C and Python)
FILE-CODE Expressiveness Keep the original AST of the program.
RECYCLE Reusability Reuse abstractions among languages.

I Flexible architecture
Puzzle-Piece Loose coupling Divide into interchangeable components.
CUBES Composition Create complex components from simpler ones.
COMMENTS Cooperation Components can communicate and delegate tasks.
MICROSCOPE Observability Pluggable hooks observe the analysis.

9

From distinct Python and C analyses...

Py.program # Py.desugar # Py.exceptions #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.objects # Py.data_model #

×

Py.Environment Py.Attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

U.recency

◦

U.intervals

C.program # C.desugar # C.goto #

U.intraproc # U.loops # U.interproc #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.recency

◦

∧

U.intervals U.linearRel

10

... to a multilanguage analysis!
CPython

×

Py.program # Py.desugar # Py.exceptions #

Py.libraries # Py.objects # Py.data_model #

×

Py.Environment Py.Attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

C.program # C.desugar # C.goto #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.intraproc # U.loops # U.interproc #

U.recency

◦

U.intervals

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Python specific

11

Analysis of the Example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->counter += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->counter);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

Heap (Recency)
@CounterCls @CounterIncr
@CounterGet

@I{CounterCls}

Intervals

〈@I{CounterCls},16,s32}〉 7→ [0, 0]
power 7→ [0, 127]

Universal

Pointers
〈CounterCls,8,ptr〉 : {PyType_Type}
〈CounterCls,232,ptr〉 : {Counter_methods}

〈@I{CounterCls},8,ptr〉 : {CounterCls}

C

Attributes
@CounterCls 7→ {get, incr}

@I{CounterCls} 7→ ∅

Environment
Counter 7→ {@CounterCls}
@CounterCls·get 7→
{@c function CounterGet}
@CounterCls·incr 7→
{@c function CounterIncr}

c 7→ {@I{CounterCls}}
power 7→ {@I{int}}

Python
E#
Py.callJ Counter() Kσ]

12

Analysis of the Example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->counter += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->counter);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

Heap (Recency)
@CounterCls @CounterIncr
@CounterGet

@I{CounterCls}

Intervals

〈@I{CounterCls},16,s32}〉 7→ [0, 0]
power 7→ [0, 127]

Universal

Pointers
〈CounterCls,8,ptr〉 : {PyType_Type}
〈CounterCls,232,ptr〉 : {Counter_methods}

〈@I{CounterCls},8,ptr〉 : {CounterCls}

C

Attributes
@CounterCls 7→ {get, incr}

@I{CounterCls} 7→ ∅

Environment
Counter 7→ {@CounterCls}
@CounterCls·get 7→
{@c function CounterGet}
@CounterCls·incr 7→
{@c function CounterIncr}

c 7→ {@I{CounterCls}}
power 7→ {@I{int}}

Python
E#
C.callJ tp_new_wrapper(type, tuple(Counter), NULL) Kσ]

12

Analysis of the Example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->counter += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->counter);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

Heap (Recency)
@CounterCls @CounterIncr
@CounterGet @I{CounterCls}

Intervals

〈@I{CounterCls},16,s32}〉 7→ [0, 0]
power 7→ [0, 127]

Universal

Pointers
〈CounterCls,8,ptr〉 : {PyType_Type}
〈CounterCls,232,ptr〉 : {Counter_methods}

〈@I{CounterCls},8,ptr〉 : {CounterCls}

C

Attributes
@CounterCls 7→ {get, incr}

@I{CounterCls} 7→ ∅

Environment
Counter 7→ {@CounterCls}
@CounterCls·get 7→
{@c function CounterGet}
@CounterCls·incr 7→
{@c function CounterIncr}

c 7→ {@I{CounterCls}}
power 7→ {@I{int}}

Python
E#
C.callJ PyType_GenericNew(CounterCls, NULL, NULL) Kσ]

12

Analysis of the Example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->counter += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->counter);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

Heap (Recency)
@CounterCls @CounterIncr
@CounterGet @I{CounterCls}

Intervals

〈@I{CounterCls},16,s32}〉 7→ [0, 0]
power 7→ [0, 127]

Universal

Pointers
〈CounterCls,8,ptr〉 : {PyType_Type}
〈CounterCls,232,ptr〉 : {Counter_methods}
〈@I{CounterCls},8,ptr〉 : {CounterCls}

C

Attributes
@CounterCls 7→ {get, incr}

@I{CounterCls} 7→ ∅

Environment
Counter 7→ {@CounterCls}
@CounterCls·get 7→
{@c function CounterGet}
@CounterCls·incr 7→
{@c function CounterIncr}

c 7→ {@I{CounterCls}}
power 7→ {@I{int}}

Python
E#
C.cellsJ@I{CounterCls}->ob_type = CounterCls Kσ]

12

Analysis of the Example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->counter += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->counter);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

Heap (Recency)
@CounterCls @CounterIncr
@CounterGet @I{CounterCls}

Intervals
〈@I{CounterCls},16,s32}〉 7→ [0, 0]

power 7→ [0, 127]

Universal

Pointers
〈CounterCls,8,ptr〉 : {PyType_Type}
〈CounterCls,232,ptr〉 : {Counter_methods}
〈@I{CounterCls},8,ptr〉 : {CounterCls}

C

Attributes
@CounterCls 7→ {get, incr}

@I{CounterCls} 7→ ∅

Environment
Counter 7→ {@CounterCls}
@CounterCls·get 7→
{@c function CounterGet}
@CounterCls·incr 7→
{@c function CounterIncr}

c 7→ {@I{CounterCls}}
power 7→ {@I{int}}

Python
E#
C.cellsJ@I{CounterCls}->count = 0 Kσ]

12

Analysis of the Example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->counter += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->counter);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

Heap (Recency)
@CounterCls @CounterIncr
@CounterGet @I{CounterCls}

Intervals
〈@I{CounterCls},16,s32}〉 7→ [0, 0]

power 7→ [0, 127]

Universal

Pointers
〈CounterCls,8,ptr〉 : {PyType_Type}
〈CounterCls,232,ptr〉 : {Counter_methods}
〈@I{CounterCls},8,ptr〉 : {CounterCls}

C

Attributes
@CounterCls 7→ {get, incr}
@I{CounterCls} 7→ ∅

Environment
Counter 7→ {@CounterCls}
@CounterCls·get 7→
{@c function CounterGet}
@CounterCls·incr 7→
{@c function CounterIncr}

c 7→ {@I{CounterCls}}
power 7→ {@I{int}}

Python
c↪→p(@I{CounterCls}, σ])

12

Analysis of the Example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->counter += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->counter);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

Heap (Recency)
@CounterCls @CounterIncr
@CounterGet @I{CounterCls}

Intervals
〈@I{CounterCls},16,s32}〉 7→ [0, 0]

power 7→ [0, 127]

Universal

Pointers
〈CounterCls,8,ptr〉 : {PyType_Type}
〈CounterCls,232,ptr〉 : {Counter_methods}
〈@I{CounterCls},8,ptr〉 : {CounterCls}

C

Attributes
@CounterCls 7→ {get, incr}
@I{CounterCls} 7→ ∅

Environment
Counter 7→ {@CounterCls}
@CounterCls·get 7→
{@c function CounterGet}
@CounterCls·incr 7→
{@c function CounterIncr}
c 7→ {@I{CounterCls}}

power 7→ {@I{int}}

Python
S#Py.envJ c = @I{CounterCls} Kσ]

12

Analysis of the Example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->counter += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->counter);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

Heap (Recency)
@CounterCls @CounterIncr
@CounterGet @I{CounterCls}

Intervals
〈@I{CounterCls},16,s32}〉 7→ [0, 0]
power 7→ [0, 127]

Universal

Pointers
〈CounterCls,8,ptr〉 : {PyType_Type}
〈CounterCls,232,ptr〉 : {Counter_methods}
〈@I{CounterCls},8,ptr〉 : {CounterCls}

C

Attributes
@CounterCls 7→ {get, incr}
@I{CounterCls} 7→ ∅

Environment
Counter 7→ {@CounterCls}
@CounterCls·get 7→
{@c function CounterGet}
@CounterCls·incr 7→
{@c function CounterIncr}
c 7→ {@I{CounterCls}}
power 7→ {@I{int}}

Python
S#PyJ power = randrange(128) Kσ]

12

Experimental Evaluation

Benchmarks

Corpus selection

I Popular, real-world libraries available on GitHub, averaging 412 stars.
I Whole-program analysis: we use the tests provided by the libraries.

Library |C| |Py| Tests CLOCK Check-Circle Check-Circle Assertions Py! C

noise 722 675 15/15 18s 99.6% (4952) 100.0% (1738) 0/21 6.5
ahocorasick 3541 1336 46/92 54s 93.1% (1785) 98.0% (4937) 30/88 5.4
levenshtein 5441 357 17/17 1.5m 79.9% (3106) 93.2% (1719) 0/38 2.7
cdistance 1433 912 28/28 1.9m 95.3% (1832) 98.3% (11884) 88/207 8.7
llist 2829 1686 167/194 4.2m 99.0% (5311) 98.8% (30944) 235/691 51.7
bitarray 3244 2597 159/216 4.2m 96.3% (4496) 94.6% (21070) 100/378 14.8

safe C checks
total C checks%

total C checks

average # transitions
between Python and C
per test

13

https://github.com/caseman/noise
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/ilanschnell/bitarray

Conclusion

Conclusion

Previous works (JNI)
Static translation of some of C’s effects, injected back into the Java analysis.

Our approach: dynamic switch between the analyses of Python and C

I Combines previous C and Python analyses,
I Allocated objects are shared in the memory,
I Each language has different abstractions,
I These abstractions co-exist and collaborate.

Future work

I Analyze larger applications,
I Validate typeshed’s annotations,
I Apply to other multilanguage settings (JNI).

14

Conclusion

Previous works (JNI)
Static translation of some of C’s effects, injected back into the Java analysis.

Our approach: dynamic switch between the analyses of Python and C

I Combines previous C and Python analyses,
I Allocated objects are shared in the memory,
I Each language has different abstractions,
I These abstractions co-exist and collaborate.

Future work

I Analyze larger applications,
I Validate typeshed’s annotations,
I Apply to other multilanguage settings (JNI).

14

Conclusion

Previous works (JNI)
Static translation of some of C’s effects, injected back into the Java analysis.

Our approach: dynamic switch between the analyses of Python and C

I Combines previous C and Python analyses,

I Allocated objects are shared in the memory,
I Each language has different abstractions,
I These abstractions co-exist and collaborate.

Future work

I Analyze larger applications,
I Validate typeshed’s annotations,
I Apply to other multilanguage settings (JNI).

14

Conclusion

Previous works (JNI)
Static translation of some of C’s effects, injected back into the Java analysis.

Our approach: dynamic switch between the analyses of Python and C

I Combines previous C and Python analyses,
I Allocated objects are shared in the memory,

I Each language has different abstractions,
I These abstractions co-exist and collaborate.

Future work

I Analyze larger applications,
I Validate typeshed’s annotations,
I Apply to other multilanguage settings (JNI).

14

Conclusion

Previous works (JNI)
Static translation of some of C’s effects, injected back into the Java analysis.

Our approach: dynamic switch between the analyses of Python and C

I Combines previous C and Python analyses,
I Allocated objects are shared in the memory,
I Each language has different abstractions,

I These abstractions co-exist and collaborate.

Future work

I Analyze larger applications,
I Validate typeshed’s annotations,
I Apply to other multilanguage settings (JNI).

14

Conclusion

Previous works (JNI)
Static translation of some of C’s effects, injected back into the Java analysis.

Our approach: dynamic switch between the analyses of Python and C

I Combines previous C and Python analyses,
I Allocated objects are shared in the memory,
I Each language has different abstractions,
I These abstractions co-exist and collaborate.

Future work

I Analyze larger applications,
I Validate typeshed’s annotations,
I Apply to other multilanguage settings (JNI).

14

Conclusion

Previous works (JNI)
Static translation of some of C’s effects, injected back into the Java analysis.

Our approach: dynamic switch between the analyses of Python and C

I Combines previous C and Python analyses,
I Allocated objects are shared in the memory,
I Each language has different abstractions,
I These abstractions co-exist and collaborate.

Future work

I Analyze larger applications,
I Validate typeshed’s annotations,
I Apply to other multilanguage settings (JNI).

14

Conclusion

Previous works (JNI)
Static translation of some of C’s effects, injected back into the Java analysis.

Our approach: dynamic switch between the analyses of Python and C

I Combines previous C and Python analyses,
I Allocated objects are shared in the memory,
I Each language has different abstractions,
I These abstractions co-exist and collaborate.

Future work

I Analyze larger applications,

I Validate typeshed’s annotations,
I Apply to other multilanguage settings (JNI).

14

Conclusion

Previous works (JNI)
Static translation of some of C’s effects, injected back into the Java analysis.

Our approach: dynamic switch between the analyses of Python and C

I Combines previous C and Python analyses,
I Allocated objects are shared in the memory,
I Each language has different abstractions,
I These abstractions co-exist and collaborate.

Future work

I Analyze larger applications,
I Validate typeshed’s annotations,

I Apply to other multilanguage settings (JNI).

14

Conclusion

Previous works (JNI)
Static translation of some of C’s effects, injected back into the Java analysis.

Our approach: dynamic switch between the analyses of Python and C

I Combines previous C and Python analyses,
I Allocated objects are shared in the memory,
I Each language has different abstractions,
I These abstractions co-exist and collaborate.

Future work

I Analyze larger applications,
I Validate typeshed’s annotations,
I Apply to other multilanguage settings (JNI). 14

	Introduction
	A Concrete Example
	Concrete Multilanguage Semantics
	Mopsa, a Multilanguage Analyzer
	Experimental Evaluation
	Conclusion

