
A Multilanguage Static Analysis of
Python/C Programs with Mopsa

Raphaël Monat, Abdelraouf Ouadjaout, Antoine Miné

rmonat.fr

Facebook TAV
1 December 2021

rmonat.fr

Introduction

Static Program Analysis
average.py

1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return s
7
8 r1 = average([1, 2, 3])
9 r2 = average(['a', 'b', 'c'])

TypeError: unsupported operand type(s) for ’+’: ’int’ and ’str’

argslen.c

1 #include <string.h>
2
3 int main(int argc, char *argv[]) {
4 int i = 0;
5 for (char **p = argv; *p; p++) {
6 strlen(*p); // valid string
7 i++; // no overflow
8 }
9 return 0;
10 }

No alarm

Specifications of the analyzer

Inference of program properties such as the absence of run-time errors.
Semantic based on a formal modelization of the language.
Automatic no expert knowledge required.
Sound cover all possible executions.

1

Dynamic programming languages

Growing popularity
JavaScript #1, Python #2 on GitHub1

New features

I Object orientation,
I Dynamic typing,
I Dynamic object structure,
I Introspection operators,
I eval.

1https://octoverse.github.com/#top-languages

2

https://octoverse.github.com/#top-languages

Dynamic programming languages

Growing popularity
JavaScript #1, Python #2 on GitHub1

New features

I Object orientation,

I Dynamic typing,
I Dynamic object structure,
I Introspection operators,
I eval.

1https://octoverse.github.com/#top-languages

2

https://octoverse.github.com/#top-languages

Dynamic programming languages

Growing popularity
JavaScript #1, Python #2 on GitHub1

New features

I Object orientation,
I Dynamic typing,

I Dynamic object structure,
I Introspection operators,
I eval.

1https://octoverse.github.com/#top-languages

2

https://octoverse.github.com/#top-languages

Dynamic programming languages

Growing popularity
JavaScript #1, Python #2 on GitHub1

New features

I Object orientation,
I Dynamic typing,
I Dynamic object structure,

I Introspection operators,
I eval.

1https://octoverse.github.com/#top-languages

2

https://octoverse.github.com/#top-languages

Dynamic programming languages

Growing popularity
JavaScript #1, Python #2 on GitHub1

New features

I Object orientation,
I Dynamic typing,
I Dynamic object structure,
I Introspection operators,

I eval.

1https://octoverse.github.com/#top-languages

2

https://octoverse.github.com/#top-languages

Dynamic programming languages

Growing popularity
JavaScript #1, Python #2 on GitHub1

New features

I Object orientation,
I Dynamic typing,
I Dynamic object structure,
I Introspection operators,
I eval.

1https://octoverse.github.com/#top-languages

2

https://octoverse.github.com/#top-languages

Python’s specificities

No standard

I CPython is the reference
=⇒ manual inspection of the source code and handcrafted tests

Operator redefinition

I Calls, additions, attribute
accesses

I Operators eventually call
overloaded __methods__

Protected attributes

1 class Protected:
2 def __init__(self, priv):
3 self._priv = priv
4 def __getattribute__(self, attr):
5 if attr[0] == "_": raise AttributeError("...")
6 return object.__getattribute__(self, attr)
7
8 a = Protected(42)
9 a._priv # AttributeError raised

3

Python’s specificities

No standard

I CPython is the reference
=⇒ manual inspection of the source code and handcrafted tests

Operator redefinition

I Calls, additions, attribute
accesses

I Operators eventually call
overloaded __methods__

Protected attributes

1 class Protected:
2 def __init__(self, priv):
3 self._priv = priv
4 def __getattribute__(self, attr):
5 if attr[0] == "_": raise AttributeError("...")
6 return object.__getattribute__(self, attr)
7
8 a = Protected(42)
9 a._priv # AttributeError raised

3

Python’s specificities (II)

Dual type system

I Nominal (classes, MRO)

I Structural (attributes)

Exceptions
Exceptions rather than specific values
I 1 + "a" TypeError
I l[len(l) + 1] IndexError

Fspath (from standard library)

1 class Path:
2 def __fspath__(self): return 42
3
4 def fspath(p):
5 if isinstance(p, (str, bytes)):
6 return p
7 elif hasattr(p, "__fspath__"):
8 r = p.__fspath__()
9 if isinstance(r, (str, bytes)):
10 return r
11 raise TypeError
12
13 fspath("/dev" if random() else Path())

Barrett et al. “A Monotonic Superclass Linearization for Dylan”. OOPSLA 1996

4

Python’s specificities (II)

Dual type system

I Nominal (classes, MRO)
I Structural (attributes)

Exceptions
Exceptions rather than specific values
I 1 + "a" TypeError
I l[len(l) + 1] IndexError

Fspath (from standard library)

1 class Path:
2 def __fspath__(self): return 42
3
4 def fspath(p):
5 if isinstance(p, (str, bytes)):
6 return p
7 elif hasattr(p, "__fspath__"):
8 r = p.__fspath__()
9 if isinstance(r, (str, bytes)):
10 return r
11 raise TypeError
12
13 fspath("/dev" if random() else Path())

Barrett et al. “A Monotonic Superclass Linearization for Dylan”. OOPSLA 1996

4

Python’s specificities (II)

Dual type system

I Nominal (classes, MRO)
I Structural (attributes)

Exceptions
Exceptions rather than specific values
I 1 + "a" TypeError
I l[len(l) + 1] IndexError

Fspath (from standard library)

1 class Path:
2 def __fspath__(self): return 42
3
4 def fspath(p):
5 if isinstance(p, (str, bytes)):
6 return p
7 elif hasattr(p, "__fspath__"):
8 r = p.__fspath__()
9 if isinstance(r, (str, bytes)):
10 return r
11 raise TypeError
12
13 fspath("/dev" if random() else Path())

Barrett et al. “A Monotonic Superclass Linearization for Dylan”. OOPSLA 1996

4

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)
I Garbage collection

5

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)

I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)
I Garbage collection

5

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)
I Garbage collection

5

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)
I Garbage collection

5

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)

I Different runtime-errors (exceptions in Python)
I Garbage collection

5

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)

I Garbage collection

5

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)
I Garbage collection

5

Outline

1 Introduction

2 Mopsa

3 A Concrete Example

4 Concrete Multilanguage Semantics

5 Implementation & Experimental Evaluation

6 Conclusion

6

Mopsa

A program analysis workflow

Avering numbers

1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I l[i]

Searching for a loop invariant (l. 4)

Stateless domains: list content, list length

Environment abstraction

m 7→ @]
int] i 7→ @]

int]

els(l) 7→ @]
int]

@]
Task · weight 7→ @]

int]

Numeric abstraction (intervals)

m ∈ [0,+∞)

els(l) ∈ [0, 20]

i ∈ [0,+∞)

0 ≤ @]
Task · weight ≤ 20

Attributes abstraction

@]
Task 7→ ({weight }, ∅)

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

7

A program analysis workflow

Avering numbers

1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I l[i]

Searching for a loop invariant (l. 4)

Stateless domains: list content, list length

Environment abstraction

m 7→ @]
int] i 7→ @]

int]

els(l) 7→ @]
int]

@]
Task · weight 7→ @]

int]

Numeric abstraction (intervals)

m ∈ [0,+∞)

els(l) ∈ [0, 20]

i ∈ [0,+∞)

0 ≤ @]
Task · weight ≤ 20

Attributes abstraction

@]
Task 7→ ({weight }, ∅)

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

7

A program analysis workflow

Avering numbers

1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I l[i]

Searching for a loop invariant (l. 4)
Stateless domains: list content,

list length

Environment abstraction

m 7→ @]
int] i 7→ @]

int] els(l) 7→ @]
int]

@]
Task · weight 7→ @]

int]

Numeric abstraction (intervals)

m ∈ [0,+∞)

els(l) ∈ [0, 20]

i ∈ [0,+∞)

0 ≤ @]
Task · weight ≤ 20

Attributes abstraction

@]
Task 7→ ({weight }, ∅)

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

7

A program analysis workflow

Avering numbers

1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I l[i]

Searching for a loop invariant (l. 4)
Stateless domains: list content,

list length

Environment abstraction

m 7→ @]
int] i 7→ @]

int] els(l) 7→ @]
int]

@]
Task · weight 7→ @]

int]

Numeric abstraction (intervals)
m ∈ [0,+∞) els(l) ∈ [0, 20] i ∈ [0,+∞)

0 ≤ @]
Task · weight ≤ 20

Attributes abstraction

@]
Task 7→ ({weight }, ∅)

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

7

A program analysis workflow

Avering numbers

1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I l[i]

Searching for a loop invariant (l. 4)
Stateless domains: list content, list length

Environment abstraction

m 7→ @]
int] i 7→ @]

int] els(l) 7→ @]
int]

@]
Task · weight 7→ @]

int]

Numeric abstraction (intervals)
m ∈ [0,+∞) els(l) ∈ [0, 20]
len(l) ∈ [5, 10] i ∈ [0, 10]

0 ≤ @]
Task · weight ≤ 20

Attributes abstraction

@]
Task 7→ ({weight }, ∅)

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

7

A program analysis workflow

Avering numbers

1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I l[i]

Searching for a loop invariant (l. 4)
Stateless domains: list content, list length

Environment abstraction

m 7→ @]
int] i 7→ @]

int] els(l) 7→ @]
int]

@]
Task · weight 7→ @]

int]

Numeric abstraction (polyhedra)
m ∈ [0,+∞) els(l) ∈ [0, 20]
0 ≤ i < len(l) 5 ≤ len(l) ≤ 10

0 ≤ @]
Task · weight ≤ 20

Attributes abstraction

@]
Task 7→ ({weight }, ∅)

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

7

A program analysis workflow

Averaging tasks

1 class Task:
2 def __init__(self, weight):
3 if weight < 0: raise ValueError
4 self.weight = weight
5
6 def average(l):
7 m = 0
8 for i in range(len(l)):
9 m = m + l[i].weight
10 m = m // (i + 1)
11 return m
12
13 l = [Task(randint(0, 20))
14 for i in range(randint(5, 10))]
15 m = average(l)

Proved safe?
I m // (i+1)
I l[i].weight

Searching for a loop invariant (l. 4)
Stateless domains: list content, list length

Environment abstraction

m 7→ @]
int] i 7→ @]

int] els(l) 7→ @]
Task

@]
Task · weight 7→ @]

int]

Numeric abstraction (polyhedra)
m ∈ [0,+∞)

els(l) ∈ [0, 20]

0 ≤ i < len(l) 5 ≤ len(l) ≤ 10
0 ≤ @]

Task · weight ≤ 20

Attributes abstraction

@]
Task 7→ ({ weight }, ∅)

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

7

A program analysis workflow

Averaging tasks

1 class Task:
2 def __init__(self, weight):
3 if weight < 0: raise ValueError
4 self.weight = weight
5
6 def average(l):
7 m = 0
8 for i in range(len(l)):
9 m = m + l[i].weight
10 m = m // (i + 1)
11 return m
12
13 l = [Task(randint(0, 20))
14 for i in range(randint(5, 10))]
15 m = average(l)

Proved safe?
I m // (i+1)
I l[i].weight

Searching for a loop invariant (l. 4)
Stateless domains: list content, list length

Environment abstraction

m 7→ @]
int] i 7→ @]

int] els(l) 7→ @]
Task

@]
Task · weight 7→ @]

int]

Numeric abstraction (polyhedra)
m ∈ [0,+∞)

els(l) ∈ [0, 20]

0 ≤ i < len(l) 5 ≤ len(l) ≤ 10
0 ≤ @]

Task · weight ≤ 20

Attributes abstraction

@]
Task 7→ ({weight }, ∅)

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

7

Overview of Mopsa

Modular Open Platform for Static Analysis2
gitlab.com/mopsa/mopsa-analyzer

I One AST to analyze them all
Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

I Unified domain signature
PEN Semantic rewriting
Puzzle-Piece Loose coupling
MICROSCOPE Observability

I DAG of abstract domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

2Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019. 8

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis2
gitlab.com/mopsa/mopsa-analyzer

I One AST to analyze them all
Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

I Unified domain signature
PEN Semantic rewriting
Puzzle-Piece Loose coupling
MICROSCOPE Observability

I DAG of abstract domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

2Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019. 8

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis2
gitlab.com/mopsa/mopsa-analyzer

I One AST to analyze them all
Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

I Unified domain signature
PEN Semantic rewriting
Puzzle-Piece Loose coupling
MICROSCOPE Observability

I DAG of abstract domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

2Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019. 8

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis2
gitlab.com/mopsa/mopsa-analyzer

I One AST to analyze them all
Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

I Unified domain signature
PEN Semantic rewriting
Puzzle-Piece Loose coupling
MICROSCOPE Observability

I DAG of abstract domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

2Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019. 8

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis2
gitlab.com/mopsa/mopsa-analyzer

I One AST to analyze them all
Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

I Unified domain signature
PEN Semantic rewriting
Puzzle-Piece Loose coupling
MICROSCOPE Observability

I DAG of abstract domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

2Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019. 8

gitlab.com/mopsa/mopsa-analyzer

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}
clean init

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it, target

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

9

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}
clean init

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it, target

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

9

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}
clean init

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it, target

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

9

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}
clean init

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it, target

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

9

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}
clean init

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it, target

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

9

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}
clean init

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it, target

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

9

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}
clean init

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it, target

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

9

A Concrete Example

Combining C and Python – example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

I power ≤ 30⇒ r = 2power

I power = 31⇒ r = −231

I 32 ≤ power ≤ 64: OverflowError:
signed integer is greater than maximum

I power ≥ 64: OverflowError:
Python int too large to convert to C long

10

Combining C and Python – example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

I power ≤ 30⇒ r = 2power

I power = 31⇒ r = −231

I 32 ≤ power ≤ 64: OverflowError:
signed integer is greater than maximum

I power ≥ 64: OverflowError:
Python int too large to convert to C long

10

Combining C and Python – example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

I power ≤ 30⇒ r = 2power

I power = 31⇒ r = −231

I 32 ≤ power ≤ 64: OverflowError:
signed integer is greater than maximum

I power ≥ 64: OverflowError:
Python int too large to convert to C long

10

Combining C and Python – example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

I power ≤ 30⇒ r = 2power

I power = 31⇒ r = −231

I 32 ≤ power ≤ 64: OverflowError:
signed integer is greater than maximum

I power ≥ 64: OverflowError:
Python int too large to convert to C long

10

How to analyze multilanguage programs?

Type annotations
class Counter:
def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors
I Only types
I Typeshed: type annotations for the standard library

, used in previous work:
Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation
of Python Programs”. ECOOP 2020.

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations
class Counter:
def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors

I Only types
I Typeshed: type annotations for the standard library

, used in previous work:
Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation
of Python Programs”. ECOOP 2020.

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations
class Counter:
def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors
I Only types

I Typeshed: type annotations for the standard library

, used in previous work:
Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation
of Python Programs”. ECOOP 2020.

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations
class Counter:
def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors
I Only types
I Typeshed: type annotations for the standard library

, used in previous work:
Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation
of Python Programs”. ECOOP 2020.

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations
class Counter:
def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors
I Only types
I Typeshed: type annotations for the standard library, used in previous work:
Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation
of Python Programs”. ECOOP 2020.

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code
class Counter:
def __init__(self):
self.count = 0

def get(self):
return self.count

def incr(self, i=1):
self.count += i

I No integer wrap-around in Python
I Some effects can’t be written in pure Python (e.g., read-only attributes)

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code
class Counter:
def __init__(self):
self.count = 0

def get(self):
return self.count

def incr(self, i=1):
self.count += i

I No integer wrap-around in Python

I Some effects can’t be written in pure Python (e.g., read-only attributes)

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code
class Counter:
def __init__(self):
self.count = 0

def get(self):
return self.count

def incr(self, i=1):
self.count += i

I No integer wrap-around in Python
I Some effects can’t be written in pure Python (e.g., read-only attributes)

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code

I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion

I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources

I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does

I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python

I Detect runtime errors in Python, in C, and at the boundary

11

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

11

Analysis result

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

12

Analysis result

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

12

Concrete Multilanguage Semantics

Multilanguage semantics

Concrete definition

I Builds upon the Python and C semantics

I Defines the API: calls between languages, value conversions
I Shared heap, with disjoint, complementary views
I Boundary functions when objects switch views for the first time

Limitations

I Garbage collection not handled
I C access to Python objects only through the API (verified by Mopsa)
I Manual modelization from CPython’s source code

13

Multilanguage semantics

Concrete definition

I Builds upon the Python and C semantics
I Defines the API: calls between languages, value conversions

I Shared heap, with disjoint, complementary views
I Boundary functions when objects switch views for the first time

Limitations

I Garbage collection not handled
I C access to Python objects only through the API (verified by Mopsa)
I Manual modelization from CPython’s source code

13

Multilanguage semantics

Concrete definition

I Builds upon the Python and C semantics
I Defines the API: calls between languages, value conversions
I Shared heap, with disjoint, complementary views

I Boundary functions when objects switch views for the first time

Limitations

I Garbage collection not handled
I C access to Python objects only through the API (verified by Mopsa)
I Manual modelization from CPython’s source code

13

Multilanguage semantics

Concrete definition

I Builds upon the Python and C semantics
I Defines the API: calls between languages, value conversions
I Shared heap, with disjoint, complementary views
I Boundary functions when objects switch views for the first time

Limitations

I Garbage collection not handled
I C access to Python objects only through the API (verified by Mopsa)
I Manual modelization from CPython’s source code

13

Multilanguage semantics

Concrete definition

I Builds upon the Python and C semantics
I Defines the API: calls between languages, value conversions
I Shared heap, with disjoint, complementary views
I Boundary functions when objects switch views for the first time

Limitations

I Garbage collection not handled
I C access to Python objects only through the API (verified by Mopsa)
I Manual modelization from CPython’s source code

13

Multilanguage semantics

Concrete definition

I Builds upon the Python and C semantics
I Defines the API: calls between languages, value conversions
I Shared heap, with disjoint, complementary views
I Boundary functions when objects switch views for the first time

Limitations

I Garbage collection not handled

I C access to Python objects only through the API (verified by Mopsa)
I Manual modelization from CPython’s source code

13

Multilanguage semantics

Concrete definition

I Builds upon the Python and C semantics
I Defines the API: calls between languages, value conversions
I Shared heap, with disjoint, complementary views
I Boundary functions when objects switch views for the first time

Limitations

I Garbage collection not handled
I C access to Python objects only through the API (verified by Mopsa)

I Manual modelization from CPython’s source code

13

Multilanguage semantics

Concrete definition

I Builds upon the Python and C semantics
I Defines the API: calls between languages, value conversions
I Shared heap, with disjoint, complementary views
I Boundary functions when objects switch views for the first time

Limitations

I Garbage collection not handled
I C access to Python objects only through the API (verified by Mopsa)
I Manual modelization from CPython’s source code

13

Implementation & Experimental Evaluation

From distinct Python and C analyses...

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

×

Py.environment Py.attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

U.recency

×

U.intervals U.strings

UniversalC

Python specific

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

C.program # C.desugar # C.goto #

U.intraproc # U.loops # U.interproc #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.recency

◦

∧

U.intervals U.linearRel

14

... to a multilanguage analysis!
CPython

×

Py.program # Py.desugar # Py.exceptions #

Py.libraries # Py.objects # Py.data_model #

×

Py.Environment Py.Attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

C.program # C.desugar # C.goto #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.intraproc # U.loops # U.interproc #

U.recency

◦

U.intervals

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Python specific

Implementation LOC

Part LOC

Framework 13200

Universal 5600

C 11700

Python 12600

Multilanguage 2500

15

... to a multilanguage analysis!
CPython

×

Py.program # Py.desugar # Py.exceptions #

Py.libraries # Py.objects # Py.data_model #

×

Py.Environment Py.Attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

C.program # C.desugar # C.goto #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.intraproc # U.loops # U.interproc #

U.recency

◦

U.intervals

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Python specific

Implementation LOC

Part LOC

Framework 13200

Universal 5600

C 11700

Python 12600

Multilanguage 2500

15

... to a multilanguage analysis!
CPython

×

Py.program # Py.desugar # Py.exceptions #

Py.libraries # Py.objects # Py.data_model #

×

Py.Environment Py.Attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

C.program # C.desugar # C.goto #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.intraproc # U.loops # U.interproc #

U.recency

◦

U.intervals

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Python specific

Implementation LOC

Part LOC

Framework 13200

Universal 5600

C 11700

Python 12600

Multilanguage 2500

15

... to a multilanguage analysis!
CPython

×

Py.program # Py.desugar # Py.exceptions #

Py.libraries # Py.objects # Py.data_model #

×

Py.Environment Py.Attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

C.program # C.desugar # C.goto #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.intraproc # U.loops # U.interproc #

U.recency

◦

U.intervals

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Python specific

Implementation LOC

Part LOC

Framework 13200

Universal 5600

C 11700

Python 12600

Multilanguage 2500

15

... to a multilanguage analysis!
CPython

×

Py.program # Py.desugar # Py.exceptions #

Py.libraries # Py.objects # Py.data_model #

×

Py.Environment Py.Attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

C.program # C.desugar # C.goto #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.intraproc # U.loops # U.interproc #

U.recency

◦

U.intervals

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Python specific

Implementation LOC

Part LOC

Framework 13200

Universal 5600

C 11700

Python 12600

Multilanguage 2500

15

... to a multilanguage analysis!
CPython

×

Py.program # Py.desugar # Py.exceptions #

Py.libraries # Py.objects # Py.data_model #

×

Py.Environment Py.Attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

C.program # C.desugar # C.goto #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.intraproc # U.loops # U.interproc #

U.recency

◦

U.intervals

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Python specific

Implementation LOC

Part LOC

Framework 13200

Universal 5600

C 11700

Python 12600

Multilanguage 2500

15

... to a multilanguage analysis!
CPython

×

Py.program # Py.desugar # Py.exceptions #

Py.libraries # Py.objects # Py.data_model #

×

Py.Environment Py.Attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

C.program # C.desugar # C.goto #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.intraproc # U.loops # U.interproc #

U.recency

◦

U.intervals

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Python specific

Implementation LOC

Part LOC

Framework 13200

Universal 5600

C 11700

Python 12600

Multilanguage 2500

15

Benchmarks

Corpus selection

I Popular, real-world libraries available on GitHub, averaging 412 stars.
I Whole-program analysis: we use the tests provided by the libraries.

Library |C| |Py| Tests CLOCK Check-Circle Check-Circle Assertions Py! C

noise 722 675 15/15 18s 99.6% (4952) 100.0% (1738) 0/21 6.5
ahocorasick 3541 1336 46/92 54s 93.1% (1785) 98.0% (4937) 30/88 5.4
levenshtein 5441 357 17/17 1.5m 79.9% (3106) 93.2% (1719) 0/38 2.7
cdistance 1433 912 28/28 1.9m 95.3% (1832) 98.3% (11884) 88/207 8.7
llist 2829 1686 167/194 4.2m 99.0% (5311) 98.8% (30944) 235/691 51.7
bitarray 3244 2597 159/216 4.2m 96.3% (4496) 94.6% (21070) 100/378 14.8

safe C checks
total C checks%

total C checks

average # transitions
between Python and C
per test 16

https://github.com/caseman/noise
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/ilanschnell/bitarray

Conclusion

Contribution: multilanguage Python/C analysis

Difficulties

I Concrete semantics
I Memory interaction

Previous works

I Type/exceptions analyses for the JNI
I No detection of runtime errors in C

Results

I Careful separation of the states and modelization of the API
I Lightweight domain on top of off-the-shelf C and Python analyses
I Shared underlying abstractions (numeric, recency)
I Scale to small, real-world libraries (using client code)

Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C
Extensions”. SAS 2021

17

Contribution: multilanguage Python/C analysis

Difficulties

I Concrete semantics
I Memory interaction

Previous works

I Type/exceptions analyses for the JNI
I No detection of runtime errors in C

Results

I Careful separation of the states and modelization of the API
I Lightweight domain on top of off-the-shelf C and Python analyses
I Shared underlying abstractions (numeric, recency)
I Scale to small, real-world libraries (using client code)

Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C
Extensions”. SAS 2021

17

Contribution: multilanguage Python/C analysis

Difficulties

I Concrete semantics
I Memory interaction

Previous works

I Type/exceptions analyses for the JNI
I No detection of runtime errors in C

Results

I Careful separation of the states and modelization of the API
I Lightweight domain on top of off-the-shelf C and Python analyses
I Shared underlying abstractions (numeric, recency)
I Scale to small, real-world libraries (using client code)

Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C
Extensions”. SAS 2021

17

Future works

Multilanguage analyses

I Other interoperability frameworks (Cffi, Swig, Cython)
I Bigger applications

Library analyses

I Library analysis without client code
I Infer Typeshed’s annotations

18

Future works

Multilanguage analyses

I Other interoperability frameworks (Cffi, Swig, Cython)
I Bigger applications

Library analyses

I Library analysis without client code
I Infer Typeshed’s annotations

18

A Multilanguage Static Analysis of
Python/C Programs with Mopsa

Raphaël Monat, Abdelraouf Ouadjaout, Antoine Miné

rmonat.fr

Facebook TAV
1 December 2021

Looking for

I RA / Postdoc position

I Starting fall 2022

I In the UK or Europe

I raphael.monat@lip
6.fr

rmonat.fr

	Introduction
	Mopsa
	A Concrete Example
	Concrete Multilanguage Semantics
	Implementation & Experimental Evaluation
	Conclusion
	Appendix

