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Youngest team, hosted in ESPRIT.

» Patrick Baillot » Nordine Feddal

» Clément Ballabriga » Andrei Florea

» Julien Forget » Sandro Grebant

» Giuseppe Lipari » Leandro Gomes

» Vlad Rusu » |Ikram Senoussaoui
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Cheap approach: test prog.
Some bugs may go undetected!

Would there be a way to automatically prove programs correct?
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Dt (abstract)
False alarm (Abstraction too coarse)
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P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5



Dt (abstract)

Unsound analysis
(shouldn’t happen)

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5
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average.py argslen.c
1 def average(l): 1 #include <string.h>
2 m=0 2
3 for i in range(len(1l)): 3 int main(int argc, char +argv[]) {
4 m=m+ 1[i] 4 int i = 0;
5 m=m// (i+ 1) 5 for (char #+p = argv; *p; p++) {
6 return s 6 strlen(*p); // valid string
7 7 i++; // no overflow
8 rl = average([1, 2, 31) 8 }
9 r2 = average(['a', 'b', 'c']) 9 return 0;

0 }

TypeError: unsupported operand type(s) for "+ 'int’ and 'str’

Inference of program properties such as the absence of run-time errors.
Semantic based on a formal modelization of the language.

Automatic no expert knowledge required.

Sound covers all possible executions.




Bertrane, P. Cousot, R. Cousot, Feret, Mauborgne, Miné, and Rival. “Static analysis and verification of
aerospace software by abstract interpretation”. AIAA Infotech@Aerospace (I@A 2010) 2010 /




» Generated code

» Dynamicatocation

Bertrane, P. Cousot, R. Cousot, Feret, Mauborgne, Miné, and Rival. “Static analysis and verification of
aerospace software by abstract interpretation”. AIAA Infotech@Aerospace (I@A 2010) 2010 /




» Generated code

» Dynamicatocation

» Multiple langages?

» Precision and configurability?

Bertrane, P. Cousot, R. Cousot, Feret, Mauborgne, Miné, and Rival. “Static analysis and verification of
aerospace software by abstract interpretation”. AIAA Infotech@Aerospace (I@A 2010) 2010 /
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gitlab.com/mopsa/mopsa-analyzer

e Modular Open Platform for Static Analysis'

gitlab.com/mopsa/mopsa-analyzer

» Antoine Miné » David Delmas » Matthieu Journault
» Abdelraouf Ouadjaout » Guillaume Bau
» Raphaél Monat » Milla Valnet

"Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static 9


gitlab.com/mopsa/mopsa-analyzer
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Runtime error detection

# safe operations

Language Benchmark Max. LoC ~Time Selectivity i
# operations
c? Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%
Python? PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%
Python+C* ahocorasick 4,800 1.0m 98.0%
bitarray 5,700 4.6m 94.6%

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020 ,lO

"Monat, Ouadjaout, and Miné. “A Multilanguage Static Analzsis of thhon Programs with Native C Extensions”. SAS 2021
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. _ . Guaranteed Termination
Software-Verification Competition

» Yearly, since 2012 Abstract
» Part of ETAPS

» Organized by Dirk Beyer (Munich)
» 50 participating tools in 2023
>

Initially for model checkers
Complete
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Category # tasks  Median loc.
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Category # tasks  Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

» AWS C commons » OpenBSD
» BusyBox (coreutils alternative) » uthash
» Linux Device Drivers
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true (witness confirmed)

unconfirmed (false, unknown, or resources exhausted)'

invalid (error in witness syntax)

WITNESS_VALIDATOR

VERIFIER

true-unreach

false-unreach

VERIFIER unknown

—_———

. invalid (error in witness syntax
verdict ¢ yntax)

WITNESS VALIDATOR [ unconfirmed (true, unknown, or resources exhausted) .

Remarks false (witness confirmed)
» community-based curation of verdicts
» 187 manual fixes on my end
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Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

raw scorein s
overall score Z 2

# tasksins
sesubCategory

You may have a high raw score but not so good overall score.
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» Interprocedural encoding to be improved?®
» Cross-validator scores can be low®- 45%
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Automata where edges contain program invariants and control choices

» Interprocedural encoding to be improved?®
» Cross-validator scores can be low®- 45%
» 96.4% of Mopsa’s trivial witnesses are validated

®Saan. Witness Generation for Data-flow Analysis. 2020
6Beyer, Dangl, Dietsch, Heizmann, Lemberger, and Tautschnig. “Verification Witnesses”. 2022
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Our approach

[ Analyze the target program with Mopsa
[2 Postprocess Mopsa's result to decide whether the property of interest holds

e Yes? finished!
e No? restart with a more precise analysis

Suboptimal strategy

» Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
—> We could at least add slicing

» New analyses restart from scratch

17
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il Intervals, small structs initialized

20 + string-length domain, medium structs initialized
I3 + polyhedra with static packing
& + congruences & widening tweaks: thresholds, delay

Conf. (V) (U
1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).
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https://sv-comp.sosy-lab.org/2023/results/

Mopsa scores a bit below Goblint.”

Might be a bad configuration choice?

Mopsa is the only abstract interpreter participating in this category.

Ranks 6th/19, before Frama-C and Goblint.
Mopsa is on par with the winner for the number of programs proved correct!

’other active abstract interpreter
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Bronze medal in the SoftwareSystems category!
19 participants. First French participation.

Verifier Bubaak CPAchecker Goblint  Mopsa Symbiotic  Ultimate
Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

Mopsa ranks second on raw scores.
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» Fun! (up-to exhaustion)
» Good time for software improvements

e 20 issues fixed
o We already have a 2024 feature wishlist

» Interaction and comparison with other tools from a broad community
» Better understanding of the benchmarks

» Becoming a de facto standard
e Always ongoing benchmark curation

» Brings new research questions

21
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