
Mopsa at the Software
Verification Competition

Raphaël Monat
SyCoMoRES team
rmonat.fr

30 minutes of Science
10 March 2023

rmonat.fr

Introduction

whoami

2014 2015 2016 2017 2018 2019 2020 2021 2022

ENS de Lyon Doctorant, LIP6

With Antoine Miné

ATER, LIP6

Eva Darulova @
MPI-SWS, 5 months

Hongseok Yang @
Oxford, 3 months

Research area: formal methods
Goal: improve confidence in software

Worked on two real-world systems

I Analysis of Python programs, and interoperability with C (LIP6)
I French income tax code (Inria Paris & MSR)

1

whoami

2014 2015 2016 2017 2018 2019 2020 2021 2022

ENS de Lyon Doctorant, LIP6

With Antoine Miné

ATER, LIP6

Eva Darulova @
MPI-SWS, 5 months

Hongseok Yang @
Oxford, 3 months

Research area: formal methods
Goal: improve confidence in software

Worked on two real-world systems

I Analysis of Python programs, and interoperability with C (LIP6)
I French income tax code (Inria Paris & MSR)

1

whoami

2014 2015 2016 2017 2018 2019 2020 2021 2022

ENS de Lyon Doctorant, LIP6

With Antoine Miné

ATER, LIP6

Eva Darulova @
MPI-SWS, 5 months

Hongseok Yang @
Oxford, 3 months

Research area: formal methods
Goal: improve confidence in software

Worked on two real-world systems

I Analysis of Python programs, and interoperability with C (LIP6)
I French income tax code (Inria Paris & MSR)

1

SyCoMoRES team

Youngest team, hosted in ESPRIT.

Component-based design of real-time embedded systems

I Programming language design
I Static analysis

I Real-time scheduling
I Computer-assisted formal proofs

Members

I Patrick Baillot
I Clément Ballabriga
I Julien Forget
I Giuseppe Lipari
I Vlad Rusu

I Nordine Feddal
I Andrei Florea
I Sandro Grebant
I Leandro Gomes
I Ikram Senoussaoui

2

SyCoMoRES team

Youngest team, hosted in ESPRIT.

Component-based design of real-time embedded systems

I Programming language design
I Static analysis

I Real-time scheduling
I Computer-assisted formal proofs

Members

I Patrick Baillot
I Clément Ballabriga
I Julien Forget
I Giuseppe Lipari
I Vlad Rusu

I Nordine Feddal
I Andrei Florea
I Sandro Grebant
I Leandro Gomes
I Ikram Senoussaoui

2

SyCoMoRES team

Youngest team, hosted in ESPRIT.

Component-based design of real-time embedded systems

I Programming language design
I Static analysis

I Real-time scheduling
I Computer-assisted formal proofs

Members

I Patrick Baillot
I Clément Ballabriga
I Julien Forget
I Giuseppe Lipari
I Vlad Rusu

I Nordine Feddal
I Andrei Florea
I Sandro Grebant
I Leandro Gomes
I Ikram Senoussaoui

2

SyCoMoRES team

Youngest team, hosted in ESPRIT.

Component-based design of real-time embedded systems

I Programming language design
I Static analysis

I Real-time scheduling
I Computer-assisted formal proofs

Members

I Patrick Baillot
I Clément Ballabriga
I Julien Forget
I Giuseppe Lipari
I Vlad Rusu

I Nordine Feddal
I Andrei Florea
I Sandro Grebant
I Leandro Gomes
I Ikram Senoussaoui

2

Software verification

SJprog K

Bad statesBad states

Cheap approach: test prog.
Some bugs may go undetected!

Would there be a way to automatically prove programs correct?

3

Software verification

SJprog K Bad states

Bad states

Cheap approach: test prog.
Some bugs may go undetected!

Would there be a way to automatically prove programs correct?

3

Software verification

SJprog K Bad states

Bad states

Cheap approach: test prog.

Some bugs may go undetected!

Would there be a way to automatically prove programs correct?

3

Software verification

SJprog K Bad states

Bad states

Cheap approach: test prog.

Some bugs may go undetected!

Would there be a way to automatically prove programs correct?

3

Software verification

SJprog K Bad states

Bad states

Cheap approach: test prog.

Some bugs may go undetected!

Would there be a way to automatically prove programs correct?

3

Software verification

SJprog K Bad states

Bad states

Cheap approach: test prog.

Some bugs may go undetected!

Would there be a way to automatically prove programs correct?

3

Software verification

SJprog K

Bad states

Bad states

Cheap approach: test prog.

Some bugs may go undetected!

Would there be a way to automatically prove programs correct?

3

Software verification

SJprog K

Bad states

Bad states

Cheap approach: test prog.
Some bugs may go undetected!

Would there be a way to automatically prove programs correct?

3

Software verification

SJprog K Bad states

Bad states

Cheap approach: test prog.
Some bugs may go undetected!

Would there be a way to automatically prove programs correct?
3

An impossibility theorem

All reported
errors are true
errors

All true errors
are reported

Sound

4

An impossibility theorem

All reported
errors are true
errors

All true errors
are reported

SoundComplete

4

An impossibility theorem

All reported
errors are true
errors

All true errors
are reported

Guaranteed Termination

SoundComplete

4

An impossibility theorem

All reported
errors are true
errors

All true errors
are reported

Guaranteed Termination

SoundComplete

∅
Rice’s theorem

4

An impossibility theorem

All reported
errors are true
errors

All true errors
are reported

Guaranteed Termination

SoundComplete

Abstract
Interpretation

∅
Rice’s theorem

4

Abstract interpretation – the big picture

SJprog K

Bad states

D (concrete)

S#Jprog K

D] (abstract)

γ

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5

Abstract interpretation – the big picture

SJprog K

Bad states

D (concrete)

S#Jprog K

Bad states

D] (abstract)

γ

Program proved safe

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5

Abstract interpretation – the big picture

SJprog K

Bad states

D (concrete)

S#Jprog K

Bad states

D] (abstract)

γ

True alarm

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5

Abstract interpretation – the big picture

SJprog K

Bad states

D (concrete)

S#Jprog K

Bad states

D] (abstract)

γ

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5

Abstract interpretation – the big picture

SJprog K

Bad states

D (concrete)

S#Jprog K

Bad states

D] (abstract)

γ

False alarm (Abstraction too coarse)

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5

Abstract interpretation – the big picture

SJprog K

Bad states

D (concrete)

S#Jprog K

Bad states

D] (abstract)

γ

Unsound analysis
(shouldn’t happen)

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5

Conservative static program analysis
average.py

1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return s
7
8 r1 = average([1, 2, 3])
9 r2 = average(['a', 'b', 'c'])

TypeError: unsupported operand type(s) for ’+’: ’int’ and ’str’

argslen.c

1 #include <string.h>
2
3 int main(int argc, char *argv[]) {
4 int i = 0;
5 for (char **p = argv; *p; p++) {
6 strlen(*p); // valid string
7 i++; // no overflow
8 }
9 return 0;
10 }

No alarm

Specifications of the analyzer

Inference of program properties such as the absence of run-time errors.
Semantic based on a formal modelization of the language.
Automatic no expert knowledge required.
Sound covers all possible executions.

6

Critical software certification through static analysis

Check-Circle

Embedded C

I Generated code
I Dynamic allocation

Democratizing static analysis?

I Multiple langages?
I Precision and configurability?

Bertrane, P. Cousot, R. Cousot, Feret, Mauborgne, Miné, and Rival. “Static analysis and verification of
aerospace software by abstract interpretation”. AIAA Infotech@Aerospace (I@A 2010) 2010 7

Critical software certification through static analysis

Check-Circle Embedded C

I Generated code
I Dynamic allocation

Democratizing static analysis?

I Multiple langages?
I Precision and configurability?

Bertrane, P. Cousot, R. Cousot, Feret, Mauborgne, Miné, and Rival. “Static analysis and verification of
aerospace software by abstract interpretation”. AIAA Infotech@Aerospace (I@A 2010) 2010 7

Critical software certification through static analysis

Check-Circle Embedded C

I Generated code
I Dynamic allocation

Democratizing static analysis?

I Multiple langages?
I Precision and configurability?

Bertrane, P. Cousot, R. Cousot, Feret, Mauborgne, Miné, and Rival. “Static analysis and verification of
aerospace software by abstract interpretation”. AIAA Infotech@Aerospace (I@A 2010) 2010 7

Outline

1 Introduction

2 Mopsa

3 SV-Comp

4 Mopsa at SV-Comp

5 Conclusion

8

Mopsa

Overview of Mopsa

Modular Open Platform for Static Analysis1
gitlab.com/mopsa/mopsa-analyzer

2016-2021: ERC Consolidator Grant, awarded to Antoine Miné.

Goals

I explore new designs
I ease development/prototyping

I support multiple languages
I loosely couple abstractions

Contributors

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019

9

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis1
gitlab.com/mopsa/mopsa-analyzer

2016-2021: ERC Consolidator Grant, awarded to Antoine Miné.

Goals

I explore new designs
I ease development/prototyping

I support multiple languages
I loosely couple abstractions

Contributors

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019

9

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis1
gitlab.com/mopsa/mopsa-analyzer

2016-2021: ERC Consolidator Grant, awarded to Antoine Miné.

Goals

I explore new designs

I ease development/prototyping
I support multiple languages
I loosely couple abstractions

Contributors

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019

9

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis1
gitlab.com/mopsa/mopsa-analyzer

2016-2021: ERC Consolidator Grant, awarded to Antoine Miné.

Goals

I explore new designs
I ease development/prototyping

I support multiple languages
I loosely couple abstractions

Contributors

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019

9

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis1
gitlab.com/mopsa/mopsa-analyzer

2016-2021: ERC Consolidator Grant, awarded to Antoine Miné.

Goals

I explore new designs
I ease development/prototyping

I support multiple languages

I loosely couple abstractions

Contributors

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019

9

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis1
gitlab.com/mopsa/mopsa-analyzer

2016-2021: ERC Consolidator Grant, awarded to Antoine Miné.

Goals

I explore new designs
I ease development/prototyping

I support multiple languages
I loosely couple abstractions

Contributors

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019

9

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis1
gitlab.com/mopsa/mopsa-analyzer

2016-2021: ERC Consolidator Grant, awarded to Antoine Miné.

Goals

I explore new designs
I ease development/prototyping

I support multiple languages
I loosely couple abstractions

Contributors

I Antoine Miné

I Abdelraouf Ouadjaout

I Raphaël Monat

I David Delmas

I Guillaume Bau

I Milla Valnet

I Matthieu Journault

1Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static
analyzer”. VSTTE 2019

9

gitlab.com/mopsa/mopsa-analyzer

Current public analyses in Mopsa

Semantic property
Runtime error detection

' 50,000 lines of OCaml code

Language Benchmark Max. LoC ' Time Selectivity

C2 Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%

Python3 PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%

Python+C4 ahocorasick 4,800 1.0m 98.0%
bitarray 5,700 4.6m 94.6%

safe operations
operations

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020
4Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C Extensions”. SAS 2021

10

Current public analyses in Mopsa

Semantic property
Runtime error detection

' 50,000 lines of OCaml code

Language Benchmark Max. LoC ' Time Selectivity

C2 Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%

Python3 PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%

Python+C4 ahocorasick 4,800 1.0m 98.0%
bitarray 5,700 4.6m 94.6%

safe operations
operations

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020

3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020
4Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C Extensions”. SAS 2021

10

Current public analyses in Mopsa

Semantic property
Runtime error detection

' 50,000 lines of OCaml code

Language Benchmark Max. LoC ' Time Selectivity

C2 Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%

Python3 PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%

Python+C4 ahocorasick 4,800 1.0m 98.0%
bitarray 5,700 4.6m 94.6%

safe operations
operations

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020

3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020
4Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C Extensions”. SAS 2021

10

Current public analyses in Mopsa

Semantic property
Runtime error detection

' 50,000 lines of OCaml code

Language Benchmark Max. LoC ' Time Selectivity

C2 Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%

Python3 PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%

Python+C4 ahocorasick 4,800 1.0m 98.0%
bitarray 5,700 4.6m 94.6%

safe operations
operations

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020

4Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C Extensions”. SAS 2021

10

Current public analyses in Mopsa

Semantic property
Runtime error detection

' 50,000 lines of OCaml code

Language Benchmark Max. LoC ' Time Selectivity

C2 Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%

Python3 PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%

Python+C4 ahocorasick 4,800 1.0m 98.0%
bitarray 5,700 4.6m 94.6%

safe operations
operations

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020
4Monat, Ouadjaout, and Miné. “A Multilanguage Static Analysis of Python Programs with Native C Extensions”. SAS 2021 10

SV-Comp

Presentation of SV-Comp

Software-Verification Competition
I Yearly, since 2012

I Part of ETAPS
I Organized by Dirk Beyer (Munich)
I 50 participating tools in 2023
I Initially for model checkers

Guaranteed Termination

SoundComplete

Abstract
Interpretation

∅
Rice’s theorem

Model
Checking

11

Presentation of SV-Comp

Software-Verification Competition
I Yearly, since 2012
I Part of ETAPS

I Organized by Dirk Beyer (Munich)
I 50 participating tools in 2023
I Initially for model checkers

Guaranteed Termination

SoundComplete

Abstract
Interpretation

∅
Rice’s theorem

Model
Checking

11

Presentation of SV-Comp

Software-Verification Competition
I Yearly, since 2012
I Part of ETAPS
I Organized by Dirk Beyer (Munich)

I 50 participating tools in 2023
I Initially for model checkers

Guaranteed Termination

SoundComplete

Abstract
Interpretation

∅
Rice’s theorem

Model
Checking

11

Presentation of SV-Comp

Software-Verification Competition
I Yearly, since 2012
I Part of ETAPS
I Organized by Dirk Beyer (Munich)
I 50 participating tools in 2023

I Initially for model checkers

Guaranteed Termination

SoundComplete

Abstract
Interpretation

∅
Rice’s theorem

Model
Checking

11

Presentation of SV-Comp

Software-Verification Competition
I Yearly, since 2012
I Part of ETAPS
I Organized by Dirk Beyer (Munich)
I 50 participating tools in 2023
I Initially for model checkers

Guaranteed Termination

SoundComplete

Abstract
Interpretation

∅
Rice’s theorem

Model
Checking

11

Presentation of SV-Comp

Software-Verification Competition
I Yearly, since 2012
I Part of ETAPS
I Organized by Dirk Beyer (Munich)
I 50 participating tools in 2023
I Initially for model checkers

Guaranteed Termination

SoundComplete

Abstract
Interpretation

∅
Rice’s theorem

Model
Checking

11

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property

I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM

I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness

I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs

I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples

I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated

I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability

I Memory safety
I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety

I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows

I Termination
I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination

I Data race

12

Presentation of SV-Comp (II)

Workflow

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I Community-curated
I Programs can be added over the years

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

12

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons
I BusyBox (coreutils alternative)
I Linux Device Drivers

I OpenBSD
I uthash

13

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons

I BusyBox (coreutils alternative)
I Linux Device Drivers

I OpenBSD
I uthash

13

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons
I BusyBox (coreutils alternative)

I Linux Device Drivers

I OpenBSD
I uthash

13

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons
I BusyBox (coreutils alternative)
I Linux Device Drivers

I OpenBSD
I uthash

13

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons
I BusyBox (coreutils alternative)
I Linux Device Drivers

I OpenBSD

I uthash

13

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons
I BusyBox (coreutils alternative)
I Linux Device Drivers

I OpenBSD
I uthash

13

SV-Comp’s Scoring System

︸ ︷︷ ︸
verdict

Remarks
I community-based curation of verdicts
I 187 manual fixes on my end

14

SV-Comp’s Scoring System

︸ ︷︷ ︸
verdict

Remarks
I community-based curation of verdicts
I 187 manual fixes on my end

14

SV-Comp’s Scoring System

︸ ︷︷ ︸
verdict

Remarks
I community-based curation of verdicts
I 187 manual fixes on my end

14

SV-Comp’s Scoring System (II)

Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

overall score ∝
∑

s∈subCategory

raw score in s
tasks in s

You may have a high raw score but not so good overall score.

15

SV-Comp’s Scoring System (II)

Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

overall score ∝
∑

s∈subCategory

raw score in s
tasks in s

You may have a high raw score but not so good overall score.

15

SV-Comp’s Scoring System (II)

Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

overall score ∝
∑

s∈subCategory

raw score in s
tasks in s

You may have a high raw score but not so good overall score.

15

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost

I Improve interoperability between verifiers?

Witnesses
Automata where edges contain program invariants and control choices

Issues (in my opinion)

I Interprocedural encoding to be improved5

I Cross-validator scores can be low6– 45%
I 96.4% of Mopsa’s trivial witnesses are validated

5Saan. Witness Generation for Data-flow Analysis. 2020
6Beyer, Dangl, Dietsch, Heizmann, Lemberger, and Tautschnig. “Verification Witnesses”. 2022

16

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost
I Improve interoperability between verifiers?

Witnesses
Automata where edges contain program invariants and control choices

Issues (in my opinion)

I Interprocedural encoding to be improved5

I Cross-validator scores can be low6– 45%
I 96.4% of Mopsa’s trivial witnesses are validated

5Saan. Witness Generation for Data-flow Analysis. 2020
6Beyer, Dangl, Dietsch, Heizmann, Lemberger, and Tautschnig. “Verification Witnesses”. 2022

16

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost
I Improve interoperability between verifiers?

Witnesses
Automata where edges contain program invariants and control choices

Issues (in my opinion)

I Interprocedural encoding to be improved5

I Cross-validator scores can be low6– 45%
I 96.4% of Mopsa’s trivial witnesses are validated

5Saan. Witness Generation for Data-flow Analysis. 2020
6Beyer, Dangl, Dietsch, Heizmann, Lemberger, and Tautschnig. “Verification Witnesses”. 2022

16

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost
I Improve interoperability between verifiers?

Witnesses
Automata where edges contain program invariants and control choices

Issues (in my opinion)

I Interprocedural encoding to be improved5

I Cross-validator scores can be low6– 45%
I 96.4% of Mopsa’s trivial witnesses are validated

5Saan. Witness Generation for Data-flow Analysis. 2020
6Beyer, Dangl, Dietsch, Heizmann, Lemberger, and Tautschnig. “Verification Witnesses”. 2022 16

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost
I Improve interoperability between verifiers?

Witnesses
Automata where edges contain program invariants and control choices

Issues (in my opinion)

I Interprocedural encoding to be improved5

I Cross-validator scores can be low6– 45%
I 96.4% of Mopsa’s trivial witnesses are validated

5Saan. Witness Generation for Data-flow Analysis. 2020
6Beyer, Dangl, Dietsch, Heizmann, Lemberger, and Tautschnig. “Verification Witnesses”. 2022 16

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost
I Improve interoperability between verifiers?

Witnesses
Automata where edges contain program invariants and control choices

Issues (in my opinion)

I Interprocedural encoding to be improved5

I Cross-validator scores can be low6– 45%

I 96.4% of Mopsa’s trivial witnesses are validated

5Saan. Witness Generation for Data-flow Analysis. 2020
6Beyer, Dangl, Dietsch, Heizmann, Lemberger, and Tautschnig. “Verification Witnesses”. 2022 16

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost
I Improve interoperability between verifiers?

Witnesses
Automata where edges contain program invariants and control choices

Issues (in my opinion)

I Interprocedural encoding to be improved5

I Cross-validator scores can be low6– 45%
I 96.4% of Mopsa’s trivial witnesses are validated

5Saan. Witness Generation for Data-flow Analysis. 2020
6Beyer, Dangl, Dietsch, Heizmann, Lemberger, and Tautschnig. “Verification Witnesses”. 2022 16

Mopsa at SV-Comp

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa

2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

17

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

17

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!

• No? restart with a more precise analysis

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

17

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

17

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis

Suboptimal strategy

I Task: decide if a property holds on a program

But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

17

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis

Suboptimal strategy

I Task: decide if a property holds on a program

But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

17

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors

=⇒ We could at least add slicing

I New analyses restart from scratch

17

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

17

Adapting Mopsa to SV-Comp’s Framework

Our approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished!
• No? restart with a more precise analysis

Suboptimal strategy

I Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
=⇒ We could at least add slicing

I New analyses restart from scratch

17

Portfolio of analyses used

Analyses used

1 Intervals, small structs initialized

2 + string-length domain, medium structs initialized
3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. Check-Circle CLOCK

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).

18

Portfolio of analyses used

Analyses used

1 Intervals, small structs initialized
2 + string-length domain, medium structs initialized

3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. Check-Circle CLOCK

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).

18

Portfolio of analyses used

Analyses used

1 Intervals, small structs initialized
2 + string-length domain, medium structs initialized
3 + polyhedra with static packing

4 + congruences & widening tweaks: thresholds, delay

Conf. Check-Circle CLOCK

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).

18

Portfolio of analyses used

Analyses used

1 Intervals, small structs initialized
2 + string-length domain, medium structs initialized
3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. Check-Circle CLOCK

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).

18

Portfolio of analyses used

Analyses used

1 Intervals, small structs initialized
2 + string-length domain, medium structs initialized
3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. Check-Circle CLOCK

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).

18

Portfolio of analyses used

Analyses used

1 Intervals, small structs initialized
2 + string-length domain, medium structs initialized
3 + polyhedra with static packing
4 + congruences & widening tweaks: thresholds, delay

Conf. Check-Circle CLOCK

1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).
18

Mopsa’s Results

https://sv-comp.sosy-lab.org/2023/results/

Reachability
Mopsa scores a bit below Goblint.7

Might be a bad configuration choice?

Memory
Mopsa is the only abstract interpreter participating in this category.

Overflow
Ranks 6th/19, before Frama-C and Goblint.

Mopsa is on par with the winner for the number of programs proved correct!
7other active abstract interpreter

19

https://sv-comp.sosy-lab.org/2023/results/

Mopsa’s Results

https://sv-comp.sosy-lab.org/2023/results/

Reachability
Mopsa scores a bit below Goblint.7

Might be a bad configuration choice?

Memory
Mopsa is the only abstract interpreter participating in this category.

Overflow
Ranks 6th/19, before Frama-C and Goblint.

Mopsa is on par with the winner for the number of programs proved correct!

7other active abstract interpreter
19

https://sv-comp.sosy-lab.org/2023/results/

Mopsa’s Results

https://sv-comp.sosy-lab.org/2023/results/

Reachability
Mopsa scores a bit below Goblint.7

Might be a bad configuration choice?

Memory
Mopsa is the only abstract interpreter participating in this category.

Overflow
Ranks 6th/19, before Frama-C and Goblint.

Mopsa is on par with the winner for the number of programs proved correct!

7other active abstract interpreter
19

https://sv-comp.sosy-lab.org/2023/results/

Mopsa’s Results

https://sv-comp.sosy-lab.org/2023/results/

Reachability
Mopsa scores a bit below Goblint.7

Might be a bad configuration choice?

Memory
Mopsa is the only abstract interpreter participating in this category.

Overflow
Ranks 6th/19, before Frama-C and Goblint.

Mopsa is on par with the winner for the number of programs proved correct!
7other active abstract interpreter

19

https://sv-comp.sosy-lab.org/2023/results/

Mopsa’s Results

Bronze medal in the SoftwareSystems category!

19 participants. First French participation.

Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate

Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

Mopsa ranks second on raw scores.

20

Mopsa’s Results

Bronze medal in the SoftwareSystems category!
19 participants.

First French participation.

Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate

Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

Mopsa ranks second on raw scores.

20

Mopsa’s Results

Bronze medal in the SoftwareSystems category!
19 participants. First French participation.

Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate

Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

Mopsa ranks second on raw scores.

20

Mopsa’s Results

Bronze medal in the SoftwareSystems category!
19 participants. First French participation.

Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate

Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

Mopsa ranks second on raw scores.

20

Mopsa’s Results

Bronze medal in the SoftwareSystems category!
19 participants. First French participation.

Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate

Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

Mopsa ranks second on raw scores.

20

Benefits of participation

I Fun! (up-to exhaustion)

I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

21

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

21

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed

• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

21

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

21

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community

I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

21

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

21

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard

• Always ongoing benchmark curation

I Brings new research questions

21

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

21

Benefits of participation

I Fun! (up-to exhaustion)
I Good time for software improvements

• 20 issues fixed
• We already have a 2024 feature wishlist

I Interaction and comparison with other tools from a broad community
I Better understanding of the benchmarks

• Becoming a de facto standard
• Always ongoing benchmark curation

I Brings new research questions

21

Conclusion

Conclusion

Mopsa as a stable academic static analyzer,

able to analyze C and Python programs,
competing with cutting-edge verifiers.

Some SV-Comp related research questions

I Best configuration to analyze a given program under resource constraints
I Synergy with symbolic execution tools

22

Conclusion

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,

competing with cutting-edge verifiers.

Some SV-Comp related research questions

I Best configuration to analyze a given program under resource constraints
I Synergy with symbolic execution tools

22

Conclusion

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

Some SV-Comp related research questions

I Best configuration to analyze a given program under resource constraints
I Synergy with symbolic execution tools

22

Conclusion

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

Some SV-Comp related research questions

I Best configuration to analyze a given program under resource constraints

I Synergy with symbolic execution tools

22

Conclusion

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

Some SV-Comp related research questions

I Best configuration to analyze a given program under resource constraints
I Synergy with symbolic execution tools

22

Mopsa at the Software
Verification Competition

Questions

Raphaël Monat
SyCoMoRES team
rmonat.fr

30 minutes of Science
10 March 2023

rmonat.fr

	Introduction
	

	Mopsa
	

	SV-Comp
	

	Mopsa at SV-Comp
	

	Conclusion
	

