Raphael Monat

SyCoMORES team
rmonat.fr

30 minutes of Science 7, Lu_ Université @ (.Centrale"”e
10 March 2023 lreeia— de Lille

rmonat.fr

Introduction

ENS de Lyon Doctorant, LIP6 ATER, LIP6
/—H

1 1 1
2014 2015 2016 2017 2018 2019 2020 2021 2022

With Hongseok Yang @ | Eva Darulova @ Antoine Miné
Oxford, 3 months | MPI-SWS, 5 months

ENS de Lyon Doctorant, LIP6 ATER, LIP6

—

1 1
2014 2015 2016 2017 2018 2019 2020 2021 2022
With Hongseok Yang @ Eva Darulova @
Oxford, 3 months | MPI-SWS, 5 months

Goal: improve confidence in software

ENS de Lyon Doctorant, LIP6 ATER, LIP6
/_/R

1 1
2014 2015 2016 2017 2018 2019 2020 2021 2022

With Hongseok Yang @ | Eva Darulova @ Antoine Miné
Oxford, 3 months | MPI-SWS, 5 months

Goal: improve confidence in software

Youngest team, hosted in ESPRIT.

Youngest team, hosted in ESPRIT.

Youngest team, hosted in ESPRIT.

Youngest team, hosted in ESPRIT.

» Patrick Baillot » Nordine Feddal

» Clément Ballabriga » Andrei Florea

» Julien Forget » Sandro Grebant

» Giuseppe Lipari » Leandro Gomes

» Vlad Rusu » |Ikram Senoussaoui

Cheap approach: test prog.

Cheap approach: test prog.

Cheap approach: test prog.

Cheap approach: test prog.

Cheap approach: test prog.

Cheap approach: test prog.
Some bugs may go undetected!

Cheap approach: test prog.
Some bugs may go undetected!

Would there be a way to automatically prove programs correct?

Sound All true errors
are reported

All reported Complete All true errors
errors are true are reported
errors

Guaranteed Termination

All reported Complete Sound All true errors
errors are true are reported
errors

Guaranteed Termination

All true errors
are reported

All reported
errors are true
errors

Complete

Guaranteed Termination

All true errors
are reported

All reported
errors are true
errors

Complete

D (concrete)

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5

Dt (abstract)
Program proved safe

D (concrete)

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5

Dt (abstract)
True alarm

D (concrete)

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5

D (concrete) Dt (abstract)

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5

Dt (abstract)
False alarm (Abstraction too coarse)

D (concrete)

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5

Dt (abstract)

Unsound analysis
(shouldn’t happen)

P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints”. POPL 1977 5

D (concrete)

average.py argslen.c
1 def average(l): 1 #include <string.h>
2 m=0 2
3 for i in range(len(1l)): 3 int main(int argc, char +argv[]) {
4 m=m+ 1[i] 4 int i = 0;
5 m=m// (i+ 1) 5 for (char #+p = argv; *p; p++) {
6 return s 6 strlen(*p); // valid string
7 7 i++; // no overflow
8 rl = average([1, 2, 31) 8 }
9 r2 = average(['a', 'b', 'c']) 9 return 0;

0 }

TypeError: unsupported operand type(s) for "+ 'int’ and 'str’

Inference of program properties such as the absence of run-time errors.
Semantic based on a formal modelization of the language.

Automatic no expert knowledge required.

Sound covers all possible executions.

Bertrane, P. Cousot, R. Cousot, Feret, Mauborgne, Miné, and Rival. “Static analysis and verification of
aerospace software by abstract interpretation”. AIAA Infotech@Aerospace (I@A 2010) 2010 /

» Generated code

» Dynamicatocation

Bertrane, P. Cousot, R. Cousot, Feret, Mauborgne, Miné, and Rival. “Static analysis and verification of
aerospace software by abstract interpretation”. AIAA Infotech@Aerospace (I@A 2010) 2010 /

» Generated code

» Dynamicatocation

» Multiple langages?

» Precision and configurability?

Bertrane, P. Cousot, R. Cousot, Feret, Mauborgne, Miné, and Rival. “Static analysis and verification of
aerospace software by abstract interpretation”. AIAA Infotech@Aerospace (I@A 2010) 2010 /

[Introduction

21 Mopsa
3 sv-Comp
4 Mopsa at SV-Comp

8] conclusion

Mopsa

e Modular Open Platform for Static Analysis'

gitlab.com/mopsa/mopsa-analyzer

"Journault, Ming, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static 9

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis'

gitlab.com/mopsa/mopsa-analyzer

TJournault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static 9

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis'

gitlab.com/mopsa/mopsa-analyzer

TJournault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static 9

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis'

gitlab.com/mopsa/mopsa-analyzer

TJournault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static 9

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis'

gitlab.com/mopsa/mopsa-analyzer

TJournault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static 9

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis'

gitlab.com/mopsa/mopsa-analyzer

TJournault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static 9

gitlab.com/mopsa/mopsa-analyzer

e Modular Open Platform for Static Analysis'

gitlab.com/mopsa/mopsa-analyzer

» Antoine Miné » David Delmas » Matthieu Journault
» Abdelraouf Ouadjaout » Guillaume Bau
» Raphaél Monat » Milla Valnet

"Journault, Miné, Monat, and Ouadjaout. “Combinations of reusable abstract domains for a multilingual static 9

gitlab.com/mopsa/mopsa-analyzer

Runtime error detection

10

Runtime error detection

Language Benchmark Max. LoC ~Time Selectivity
c? Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020

10

Runtime error detection

Max. LoC ~ Time Selectivity # safe operations
operations

Language Benchmark

550 20s 99.8%

C? Coreutils
340,000 2.5h 98.9%

Juliet

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020

10

Runtime error detection

safe operations

Language Benchmark Max. LoC ~Time Selectivity L)
operations
c? Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%
Python? PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020 ,lO

Runtime error detection

safe operations

Language Benchmark Max. LoC ~Time Selectivity i
operations
c? Coreutils 550 20s 99.8%
Juliet 340,000 2.5h 98.9%
Python? PyPerformance 1,792 1.3m 99.2%
PathPicker 2,560 3.0m 99.2%
Python+C* ahocorasick 4,800 1.0m 98.0%
bitarray 5,700 4.6m 94.6%

2Ouadjaout and Miné. “A Library Modeling Language for the Static Analysis of C Programs”. SAS 2020
3Monat, Ouadjaout, and Miné. “Static Type Analysis by Abstract Interpretation of Python Programs”. ECOOP 2020 ,lO

"Monat, Ouadjaout, and Miné. “A Multilanguage Static Analzsis of thhon Programs with Native C Extensions”. SAS 2021

SV-Comp

Software-Verification Competition

» Yearly, since 2012

1

Software-Verification Competition
» Yearly, since 2012
» Part of ETAPS

1

Software-Verification Competition
» Yearly, since 2012
» Part of ETAPS
» Organized by Dirk Beyer (Munich)

11

Software-Verification Competition
» Yearly, since 2012
» Part of ETAPS
» Organized by Dirk Beyer (Munich)
» 50 participating tools in 2023

11

Software-Verification Competition
» Yearly, since 2012
» Part of ETAPS
» Organized by Dirk Beyer (Munich)
» 50 participating tools in 2023
» Initially for model checkers

11

. _ . Guaranteed Termination
Software-Verification Competition

» Yearly, since 2012 Abstract
» Part of ETAPS

» Organized by Dirk Beyer (Munich)
» 50 participating tools in 2023
>

Initially for model checkers
Complete

11

12

12

12

12

12

» Preprocessed C programs

12

» Preprocessed C programs
» Lots of handcrafted or small examples

12

» Preprocessed C programs

» Lots of handcrafted or small examples
» Community-curated

12

» Preprocessed C programs
» Lots of handcrafted or small examples

» Community-curated
» Programs can be added over the years

12

» Preprocessed C programs

» Lots of handcrafted or small examples
» Community-curated
» Programs can be added over the years

12

- -

» Preprocessed C programs

» Lots of handcrafted or small examples
» Community-curated
» Programs can be added over the years

12

» Reachability
» Memory safety

» Preprocessed C programs

» Lots of handcrafted or small examples
» Community-curated
» Programs can be added over the years

12

» Reachability
» Memory safety
» Integer overflows

» Preprocessed C programs

» Lots of handcrafted or small examples
» Community-curated
» Programs can be added over the years

12

» Reachability

» Memory safety
» Integer overflows
» Termination

» Preprocessed C programs

» Lots of handcrafted or small examples
» Community-curated
» Programs can be added over the years

12

» Reachability

» Memory safety
» Integer overflows
» Termination

» Preprocessed C programs

» Lots of handcrafted or small examples
» Community-curated
» Programs can be added over the years

12

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

13

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

» AWS C commons

13

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

» AWS C commons
» BusyBox (coreutils alternative)

13

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

» AWS C commons
» BusyBox (coreutils alternative)
» Linux Device Drivers

13

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

» AWS C commons » OpenBSD
» BusyBox (coreutils alternative)
» Linux Device Drivers

13

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

» AWS C commons » OpenBSD
» BusyBox (coreutils alternative) » uthash
» Linux Device Drivers

13

true (witness confirmed)

unconfirmed (false, unknown, or resources exhausted)'

invalid (error in witness syntax)

WITNESS_VALIDATOR

VERIFIER

true-unreach

false-unreach

VERIFIER

unknown

invalid (error in witness syntax)

WITNESS VALIDATOR [unconfirmed (true, unknown, or resources exhausted) .

false (witness confirmed)

true (witness confirmed)

unconfirmed (false, unknown, or resources exhausted)'

invalid (error in witness syntax)

WITNESS_VALIDATOR

VERIFIER

true-unreach

false-unreach

VERIFIER

unknown

—_———

. invalid (error in witness syntax
verdict ¢ yntax)

WITNESS VALIDATOR [unconfirmed (true, unknown, or resources exhausted) .

false (witness confirmed)

true (witness confirmed)

unconfirmed (false, unknown, or resources exhausted)'

invalid (error in witness syntax)

WITNESS_VALIDATOR

VERIFIER

true-unreach

false-unreach

VERIFIER unknown

—_———

. invalid (error in witness syntax
verdict ¢ yntax)

WITNESS VALIDATOR [unconfirmed (true, unknown, or resources exhausted) .

Remarks false (witness confirmed)
» community-based curation of verdicts
» 187 manual fixes on my end

14

Categories are divided into subcategories (a family of benchmarks).

15

Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

raw scorein s
overall score Z 2

tasksins
sesubCategory

15

Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

raw scorein s
overall score Z 2

tasksins
sesubCategory

You may have a high raw score but not so good overall score.

15

16

16

Automata where edges contain program invariants and control choices

16

Automata where edges contain program invariants and control choices

®Saan. Witness Generation for Data-flow Analysis. 2020
6Beyer, Dangl, Dietsch, Heizmann, Lemberger, and Tautschnig. “Verification Witnesses”. 2022

Automata where edges contain program invariants and control choices

» Interprocedural encoding to be improved?®

®Saan. Witness Generation for Data-flow Analysis. 2020
6Beyer, Dangl, Dietsch, Heizmann, Lemberger, and Tautschnig. “Verification Witnesses”. 2022

16

Automata where edges contain program invariants and control choices

» Interprocedural encoding to be improved?®
» Cross-validator scores can be low®- 45%

®Saan. Witness Generation for Data-flow Analysis. 2020
6Beyer, Dangl, Dietsch, Heizmann, Lemberger, and Tautschnig. “Verification Witnesses”. 2022

16

Automata where edges contain program invariants and control choices

» Interprocedural encoding to be improved?®
» Cross-validator scores can be low®- 45%
» 96.4% of Mopsa’s trivial witnesses are validated

®Saan. Witness Generation for Data-flow Analysis. 2020
6Beyer, Dangl, Dietsch, Heizmann, Lemberger, and Tautschnig. “Verification Witnesses”. 2022

16

Mopsa at SV-Comp

[Analyze the target program with Mopsa

17

[Analyze the target program with Mopsa
121 Postprocess Mopsa'’s result to decide whether the property of interest holds

17

[Analyze the target program with Mopsa
121 Postprocess Mopsa'’s result to decide whether the property of interest holds
e Yes? finished!

17

[Analyze the target program with Mopsa
121 Postprocess Mopsa'’s result to decide whether the property of interest holds

e Yes? finished!
e No? restart with a more precise analysis

17

[Analyze the target program with Mopsa

121 Postprocess Mopsa'’s result to decide whether the property of interest holds

e Yes? finished!
e No? restart with a more precise analysis

17

[Analyze the target program with Mopsa

121 Postprocess Mopsa'’s result to decide whether the property of interest holds

e Yes? finished!
e No? restart with a more precise analysis

» Task: decide if a property holds on a program

17

[Analyze the target program with Mopsa

121 Postprocess Mopsa'’s result to decide whether the property of interest holds

e Yes? finished!
e No? restart with a more precise analysis

» Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors

17

Our approach

[Analyze the target program with Mopsa
[2 Postprocess Mopsa's result to decide whether the property of interest holds

e Yes? finished!
e No? restart with a more precise analysis

Suboptimal strategy

» Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
—> We could at least add slicing

17

Our approach

[Analyze the target program with Mopsa
[2 Postprocess Mopsa's result to decide whether the property of interest holds

e Yes? finished!
e No? restart with a more precise analysis

Suboptimal strategy

» Task: decide if a property holds on a program
But Mopsa analyzes full programs and detects all runtime errors
—> We could at least add slicing

» New analyses restart from scratch

17

il Intervals, small structs initialized

18

il Intervals, small structs initialized

20 + string-length domain, medium structs initialized

18

il Intervals, small structs initialized

20 + string-length domain, medium structs initialized
I3 + polyhedra with static packing

18

il Intervals, small structs initialized

20 + string-length domain, medium structs initialized
I3 + polyhedra with static packing
& + congruences & widening tweaks: thresholds, delay

18

il Intervals, small structs initialized

20 + string-length domain, medium structs initialized
I3 + polyhedra with static packing
& + congruences & widening tweaks: thresholds, delay

Conf. (V) (U
1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

18

il Intervals, small structs initialized

20 + string-length domain, medium structs initialized
I3 + polyhedra with static packing
& + congruences & widening tweaks: thresholds, delay

Conf. (V) (U
1 5695 279
2 6433 (+738) 365 (+86)
3 6885 (+452) 1844 (+1479)
4 6909 (+24) 2009 (+165)

21220 tasks in total, 12636 correctness tasks

Mopsa validates 54% of correct tasks (61% for overall winner, UAutomizer).

18

https://sv-comp.sosy-lab.org/2023/results/

19

https://sv-comp.sosy-lab.org/2023/results/

https://sv-comp.sosy-lab.org/2023/results/

Mopsa scores a bit below Goblint.”

Might be a bad configuration choice?

’other active abstract interpreter

19

https://sv-comp.sosy-lab.org/2023/results/

https://sv-comp.sosy-lab.org/2023/results/

Mopsa scores a bit below Goblint.”

Might be a bad configuration choice?

Mopsa is the only abstract interpreter participating in this category.

’other active abstract interpreter

19

https://sv-comp.sosy-lab.org/2023/results/

https://sv-comp.sosy-lab.org/2023/results/

Mopsa scores a bit below Goblint.”

Might be a bad configuration choice?

Mopsa is the only abstract interpreter participating in this category.

Ranks 6th/19, before Frama-C and Goblint.
Mopsa is on par with the winner for the number of programs proved correct!

’other active abstract interpreter

19

https://sv-comp.sosy-lab.org/2023/results/

Bronze medal in the SoftwareSystems category!

20

Bronze medal in the SoftwareSystems category!
19 participants.

20

Bronze medal in the SoftwareSystems category!
19 participants. First French participation.

20

Bronze medal in the SoftwareSystems category!
19 participants. First French participation.

Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate
Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

20

Bronze medal in the SoftwareSystems category!
19 participants. First French participation.

Verifier Bubaak CPAchecker Goblint Mopsa Symbiotic Ultimate
Proved correct 291 1,651 1,256 1,610 942 1,423
Proved incorrect 143 59 0 0 84 2
CPU Time (s) 2,000,000 730,000 800,000 580,000 400,000 1,400,000
Rank 2 6 10 3 1 7

Mopsa ranks second on raw scores.

20

» Fun! (up-to exhaustion)

21

» Fun! (up-to exhaustion)
» Good time for software improvements

21

» Fun! (up-to exhaustion)
» Good time for software improvements
e 20 issues fixed

21

» Fun! (up-to exhaustion)
» Good time for software improvements

e 20 issues fixed
o We already have a 2024 feature wishlist

21

» Fun! (up-to exhaustion)
» Good time for software improvements

e 20 issues fixed
o We already have a 2024 feature wishlist

» Interaction and comparison with other tools from a broad community

21

» Fun! (up-to exhaustion)
» Good time for software improvements

e 20 issues fixed
o We already have a 2024 feature wishlist

» Interaction and comparison with other tools from a broad community
» Better understanding of the benchmarks

21

» Fun! (up-to exhaustion)
» Good time for software improvements

e 20 issues fixed
o We already have a 2024 feature wishlist

» Interaction and comparison with other tools from a broad community
» Better understanding of the benchmarks
» Becoming a de facto standard

21

» Fun! (up-to exhaustion)
» Good time for software improvements
e 20 issues fixed
o We already have a 2024 feature wishlist
» Interaction and comparison with other tools from a broad community
» Better understanding of the benchmarks

» Becoming a de facto standard
e Always ongoing benchmark curation

21

» Fun! (up-to exhaustion)
» Good time for software improvements

e 20 issues fixed
o We already have a 2024 feature wishlist

» Interaction and comparison with other tools from a broad community
» Better understanding of the benchmarks

» Becoming a de facto standard
e Always ongoing benchmark curation

» Brings new research questions

21

Conclusion

Mopsa as a stable academic static analyzer,

22

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,

22

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

22

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

22

Mopsa as a stable academic static analyzer,
able to analyze C and Python programs,
competing with cutting-edge verifiers.

22

Raphael Monat

SyCoMORES team
rmonat.fr

30 minutes of Science 7, Lu_ Université @ (.Centrale"”e
10 March 2023 lreeia— de Lille

rmonat.fr

	Introduction
	

	Mopsa
	

	SV-Comp
	

	Mopsa at SV-Comp
	

	Conclusion
	

