Formalizing Date Arithmetic and Statically Detecting Ambiguities for the Law

Raphaël Monat, Aymeric Fromherz, Denis Merigoux

rmonat.fr

Inría

Legal implementations

Some legal implementations are critical software: taxes, benefits

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

- a DSL for computational laws

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

- a DSL for computational laws
- providing transparency

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

- a DSL for computational laws
- easing maintenance
- providing transparency

Legal implementations

Some legal implementations are critical software: taxes, benefits

Catala

- a DSL for computational laws
- providing transparency
- easing maintenance
- through interdisciplinary work

Computing dates

\$ date -d "2024-01-31 + 1 month" +\%F

Computing dates

\$ date -d "2024-01-31 + 1 month" +\%F 2024-03-02

Computing dates

\$ date -d "2024-01-31 + 1 month" +\%F
2024-03-02
\$ date -d "2024-02-01 + 1 month" +\%F

Computing dates

\$ date -d "2024-01-31 + 1 month" +\%F 2024-03-02
\$ date -d "2024-02-01 + 1 month" +\%F 2024-03-01

Computing dates

\$ date -d "2024-01-31 + 1 month" +\%F 2024-03-02
\$ date -d "2024-02-01 + 1 month" +\%F 2024-03-01

Non-monotonic behavior?!

A wide variety of date semantics

Different legal bodies and choices

- 1 month = 30 days (Council of European Communities)

A wide variety of date semantics

Different legal bodies and choices

- 1 month = 30 days (Council of European Communities)
- When do leapers become adults?

A wide variety of date semantics

Different legal bodies and choices

- 1 month = 30 days (Council of European Communities)
- When do leapers become adults?
- 28 February in New Zealand, Taiwan

A wide variety of date semantics

Different legal bodies and choices

- 1 month = 30 days (Council of European Communities)
- When do leapers become adults?
- 28 February in New Zealand, Taiwan
- 1 March in France, Germany, Hong-Kong

A wide variety of date semantics

Different legal bodies and choices

- 1 month = 30 days (Council of European Communities)
- When do leapers become adults?
- 28 February in New Zealand, Taiwan
- 1 March in France, Germany, Hong-Kong
\Longrightarrow Formal, flexible semantics required!

A wide variety of date semantics

Different legal bodies and choices

- 1 month = 30 days (Council of European Communities)
- When do leapers become adults?
- 28 February in New Zealand, Taiwan
- 1 March in France, Germany, Hong-Kong
\Longrightarrow Formal, flexible semantics required! Focus on Gregorian calendar.

Outline

1 Semantics
2 Formalized Properties
3 Rounding-insensitivity Static Analysis
Abstracting dates in a fixed rounding mode
Lifting to both rounding modes
4 Case Study: French Housing Benefits
5 Conclusion

Semantics

Semantics - Values

$$
\begin{array}{ll}
\text { values } & v::=(y, m, d) \mid \perp \\
\text { date unit } & \delta::=y|m| d \\
\text { expressions } & e::=v \mid e+{ }_{\delta} n
\end{array}
$$

Semantics - Values

$$
\left.\begin{array}{c}
\text { values } \quad \vee \quad::=(y, m, d) \mid \perp \\
\text { date unit } \quad \delta \quad:=y|m| d \\
\text { expressions } \quad e \quad:=v \mid e+_{\delta} n
\end{array}\right\} \begin{aligned}
& 29 \text { if } m=2 \wedge \text { is_leap }(y) \\
& 28 \text { if } m=2 \wedge \text { ᄀis_leap }(y) \\
& 30 \text { if } m \in\{\text { Apr, Jun, Sep, Nov }\} \\
& 31 \text { otherwise }
\end{aligned}
$$

Semantics - invalid dates

Invalid initial dates propagate errors

Semantics - invalid dates

Invalid initial dates propagate errors

$$
\begin{aligned}
& \begin{array}{l}
\text { ADD-DAYS-ERR1 } \\
(y, m, d)+{ }_{d} n \rightarrow \perp
\end{array}
\end{aligned}
$$

Semantics - invalid dates

Invalid initial dates propagate errors

$$
\begin{array}{ll}
\begin{array}{l}
\text { ADD-DAYS-ERR1 } \\
\frac{d<1}{}
\end{array} & \begin{array}{l}
\text { ADD-DAYS-ERR2 } \\
\left.d>n b _d\right)+d n \rightarrow \perp \\
n
\end{array}
\end{array} \frac{\frac{d y, m)}{(y, m, d)+{ }_{d} n \rightarrow \perp}}{}
$$

Semantics - some cases of month addition

$$
\begin{aligned}
& \text { ADD-MONTH } \\
& \frac{1 \leq m+n \leq 12}{(y, m, d)+m n \rightarrow(y, m+n, d)}
\end{aligned}
$$

Semantics - some cases of month addition

$$
\begin{aligned}
& \text { ADD-MONTH } \\
& \frac{1 \leq m+n \leq 12}{(y, m, d)+m n \rightarrow(y, m+n, d)}
\end{aligned}
$$

Add-Month-Over

$$
m+n>12
$$

$$
\overline{(y, m, d)+m n \rightarrow(y+1, m, d)+m(n-12)}
$$

Semantics - some cases of month addition

$$
\begin{aligned}
& \text { ADD-MONTH } \\
& \frac{1 \leq m+n \leq 12}{(y, m, d)+m n \rightarrow(y, m+n, d)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ADD-MONTH-OVER } \\
& \frac{m+n>12}{(y, m, d)+m n \rightarrow(y+1, m, d)+m(n-12)}
\end{aligned}
$$

Similar cases for Add-Month-Under, year, day addition.

Semantics - Rounding

$$
(2024,01,31)+m 1 \rightarrow(2024,02,31)
$$

Semantics - Rounding

$$
\begin{aligned}
& (2024,01,31)+_{m} 1 \rightarrow(2024,02,31) \\
& \text { Rounding to valid dates required! }
\end{aligned}
$$

Semantics - Rounding

$$
(2024,01,31)+m 1 \rightarrow(2024,02,31)
$$

Rounding to valid dates required!

$$
\begin{array}{ll}
\text { rounding mode } & r::=\uparrow|\downarrow| \perp \\
\text { expressions } & e::=v\left|e+_{\delta} n\right| \text { rnd }_{r} e
\end{array}
$$

Semantics - Rounding

$$
(2024,01,31)+m 1 \rightarrow(2024,02,31)
$$

Rounding to valid dates required!

$$
\begin{array}{cl}
\text { rounding mode } & r::=\uparrow|\downarrow| \perp \\
\text { expressions } & e::=v\left|e+_{\delta} n\right| \text { nd }_{r} e \\
& \operatorname{nd}_{\uparrow}(2024,02,31) \\
=(2024,03,01)
\end{array}
$$

Semantics - Rounding

$$
(2024,01,31)+_{m} 1 \rightarrow(2024,02,31)
$$

Rounding to valid dates required!

$$
\begin{array}{ll}
\text { rounding mode } & r::=\uparrow|\downarrow| \perp \\
\text { expressions } & e::=v\left|e+_{\delta} n\right| \text { nd }_{r} e \\
& \\
\operatorname{rnd}_{\uparrow}(2024,02,31) & =(2024,03,01) \\
\operatorname{rnd}_{\downarrow}(2024,02,31) & =(2024,02,29)
\end{array}
$$

Semantics - Rounding

$$
(2024,01,31)+_{m} 1 \rightarrow(2024,02,31)
$$

Rounding to valid dates required!

```
rounding mode r ::= \uparrow|\downarrow|\perp
expressions e ::= v|e + % n| rnd
```

```
mnd
```

mnd
rnd}\downarrow\downarrow(2024,02,31)=(2024, 02, 29
rnd}\downarrow\downarrow(2024,02,31)=(2024, 02, 29
rnd }\perp(2024,02,31)=

```
rnd }\perp(2024,02,31)=
```


Semantics - Rounding

$$
(2024,01,31)+_{m} 1 \rightarrow(2024,02,31)
$$

Rounding to valid dates required!

$$
\begin{aligned}
& \begin{array}{ll}
\text { rounding mode } & r
\end{array}:=\uparrow|\downarrow| \perp \\
& \text { expressions } e \\
&::=\vee\left|e+_{\delta} n\right| \text { rnd }_{r} e \\
& \operatorname{rnd}_{\uparrow}(2024,02,31)=(2024,03,01) \\
& \operatorname{rnd}_{\downarrow}(2024,02,31)=(2024,02,29) \\
& \operatorname{rnd}_{\perp}(2024,02,31)=\perp
\end{aligned}
$$

Coreutils-like rounding not defined here

Semantics - Rounding

$$
\begin{aligned}
& \text { Round-Noop } \\
& \frac{1 \leq d \leq n b _d a y s}{}(y, m) \\
& \operatorname{rnd}_{r}(y, m, d) \rightarrow(y, m, d)
\end{aligned}
$$

Semantics - Rounding

Round-Down
$\left.\frac{d>n b^{2} \operatorname{days}(y, m)}{\operatorname{rnd}_{\downarrow}(y, m, d) \rightarrow\left(y, m, n b _d a y s\right.}(y, m)\right)$

Semantics - Rounding

Round-Noop
$\frac{1 \leq d \leq n b _d a y s(y, m)}{\operatorname{rnd}_{r}(y, m, d) \rightarrow(y, m, d)}$

Round-Down
$\left.\frac{d>\operatorname{nb} _\operatorname{days}(y, m)}{\operatorname{rnd}_{\downarrow}(y, m, d) \rightarrow\left(y, m, n b _d a y s\right.}(y, m)\right)$

Round-Up
$\frac{d>n b _d a y s(y, m) \quad(y, m, d)+m 1 \xrightarrow{*}\left(y^{\prime}, m^{\prime}, d^{\prime}\right)}{\operatorname{rnd}_{\uparrow}(y, m, d) \rightarrow\left(y^{\prime}, m^{\prime}, 1\right)}$

Semantics - Rounding

Round-Noop
$\frac{1 \leq d \leq n b _d a y s(y, m)}{\operatorname{rnd}_{r}(y, m, d) \rightarrow(y, m, d)}$

Round-Down
$\left.\frac{d>\operatorname{nb} _d a y s(y, m)}{\operatorname{rnd}_{\downarrow}(y, m, d) \rightarrow\left(y, m, n b _d a y s\right.}(y, m)\right)$

Round-Up
$\frac{d>n b _d a y s(y, m) \quad(y, m, d)+m 1 \xrightarrow{*}\left(y^{\prime}, m^{\prime}, d^{\prime}\right)}{\operatorname{rnd}_{\uparrow}(y, m, d) \rightarrow\left(y^{\prime}, m^{\prime}, 1\right)}$

Round-ERr2
$\frac{d>n b _d a y s(y, m)}{\operatorname{rnd}_{\perp}(y, m, d) \rightarrow \perp}$

Semantics

Date-period addition

Given a period (ys, ms, ds):

$$
e+_{r}(y s, m s, d s)::=\operatorname{rnd}_{r}\left(\left(e+_{y} y s\right)+_{m} m s\right)+_{d} d s
$$

Semantics

Date-period addition

Given a period ($y s, m s, d s$):

$$
e+r(y s, m s, d s)::=\operatorname{rnd}_{r}\left(\left(e+_{y} y s\right)+_{m} m s\right)+_{d} d s
$$

Avoids double rounding

Semantics

Date-period addition

Given a period (ys, ms, ds):

$$
e+r(y s, m s, d s)::=\operatorname{rnd}_{r}\left(\left(e+_{y} y s\right)+_{m} m s\right)+_{d} d s
$$

Avoids double rounding

Ambiguous expression

A date expression e is ambiguous iff $r n d_{\perp}(e) \xrightarrow{*} \perp$

Semantics

Date-period addition

Given a period (ys, ms, ds):

$$
e+_{r}(y s, m s, d s)::=\operatorname{rnd}_{r}\left(\left(e+_{y} y s\right)+_{m} m s\right)+_{d} d s
$$

Avoids double rounding

Ambiguous expression

A date expression e is ambiguous iff $r n d_{\perp}(e) \xrightarrow{*} \perp$ iff roundings e yield different values

Formalized Properties

Non-properties

Commutativity of addition

$$
(2024,03,31)+\uparrow 1 \mathrm{~m}+\uparrow 1 \mathrm{~d}=(2024,05,01)+\uparrow 1 \mathrm{~d}=(2024,05,02)
$$

Non-properties

Commutativity of addition

$$
\begin{aligned}
& (2024,03,31)+\uparrow 1 m+\uparrow 1 d=(2024,05,01)+\uparrow 1 d=(2024,05,02) \\
& (2024,03,31)+\uparrow 1 d+\uparrow 1 m=(2024,04,01)+\uparrow 1 m=(2024,05,01)
\end{aligned}
$$

Non-properties

Commutativity of addition

$$
\begin{aligned}
& (2024,03,31)+\uparrow 1 m+\uparrow 1 d=(2024,05,01)+\uparrow 1 d=(2024,05,02) \\
& (2024,03,31)+\uparrow 1 d+\uparrow 1 m=(2024,04,01)+\uparrow 1 m=(2024,05,01)
\end{aligned}
$$

Associativity of addition

$$
(2024,03,31)+\uparrow 1 m+\uparrow 1 m=(2024,05,01)+\uparrow 1 m=(2024,06,01)
$$

Non-properties

Commutativity of addition

$$
\begin{aligned}
& (2024,03,31)+\uparrow 1 m+\uparrow 1 d=(2024,05,01)+\uparrow 1 d=(2024,05,02) \\
& (2024,03,31)+\uparrow 1 d+\uparrow 1 m=(2024,04,01)+\uparrow 1 m=(2024,05,01)
\end{aligned}
$$

Associativity of addition

$$
\begin{aligned}
& (2024,03,31)+\uparrow 1 m+\uparrow 1 m=(2024,05,01)+\uparrow 1 m=(2024,06,01) \\
& (2024,03,31)+r 2=(2024,05,31)
\end{aligned}
$$

Formalized properties

All formalized with the F^{\star} proof assistant. More in the paper \& artefact. During our study, we used QCheck to test our intuition.

Formalized properties

All formalized with the F^{\star} proof assistant. More in the paper \& artefact.

 During our study, we used QCheck to test our intuition.
Well-formedness

For any date d, any period p, any value v, and $r \in\{\downarrow, \uparrow\}$, we have:

$$
\operatorname{valid}(d) \wedge d+r p \xrightarrow{*} v \Rightarrow \operatorname{valid}(v)
$$

Formalized properties

All formalized with the F^{\star} proof assistant. More in the paper \& artefact.

During our study, we used QCheck to test our intuition.

Well-formedness

For any date d, any period p, any value v, and $r \in\{\downarrow, \uparrow\}$, we have:

$$
\operatorname{valid}(d) \wedge d+r p \xrightarrow{*} v \Rightarrow \operatorname{valid}(v)
$$

Date addition is monotonic

For any dates d_{1}, d_{2}, period $p, r \in\{\downarrow, \uparrow\}$, if $d_{1}<d_{2}$, then $d_{1}+r p \leq d_{2}+r p$

Formalized properties

All formalized with the F^{\star} proof assistant. More in the paper \& artefact.

During our study, we used QCheck to test our intuition.

Well-formedness

For any date d, any period p, any value v, and $r \in\{\downarrow, \uparrow\}$, we have:

$$
\operatorname{valid}(d) \wedge d+r p \xrightarrow{*} v \Rightarrow \operatorname{valid}(v)
$$

Date addition is monotonic

For any dates d_{1}, d_{2}, period $p, r \in\{\downarrow, \uparrow\}$, if $d_{1}<d_{2}$, then $d_{1}+r p \leq d_{2}+r p$
Loose bound in conclusion of monotonicity
$(2024,03,30)+\downarrow 1 m=(2024,04,30)=(2024,03,31)+\downarrow 1 m$

Formalized properties (II)

Rounding is monotonic
For all date d, period p :
$1 d+{ }_{\downarrow} p \leq d+\uparrow p$
$2 d+\perp p \neq \perp \Rightarrow d+{ }_{\downarrow} p=d+\uparrow p=d+\perp p$

Formalized properties (II)

Rounding is monotonic
For all date d, period p :
$1 d+{ }_{\downarrow} p \leq d+\uparrow p$
$2 d+\perp p \neq \perp \Rightarrow d+_{\downarrow} p=d+\uparrow p=d+\perp p$

Equivalence of year and month addition

For all date d, for all integer $n, d+y=d+_{m}(12 * n)$.

Formalized properties (III)

Ambiguous month addition

For all valid date d, integer n such that $d+m n \xrightarrow{*}(y, m$, day $)$:

$$
\mathrm{nb} _\operatorname{days}(y, m)<\text { day } \Leftrightarrow \mathrm{rnd}_{\perp}((y, m, \text { day })) \xrightarrow{*} \perp
$$

Formalized properties (III)

Ambiguous month addition

For all valid date d, integer n such that $d+m n \xrightarrow{*}(y, m$, day $)$:

$$
\text { nb_days }(y, m)<\text { day } \Leftrightarrow \operatorname{rnd}_{\perp}((y, m, \text { day })) \xrightarrow{*} \perp
$$

Month addition is ambiguous iff
the resulting day exceeds the number of days of the resulting month

Formalized properties (III)

Ambiguous month addition

For all valid date d, integer n such that $d+m n \xrightarrow{*}(y, m$, day $)$:

$$
\mathrm{nb} _ \text {days }(y, m)<\text { day } \Leftrightarrow \operatorname{rnd}_{\perp}((y, m, \text { day })) \xrightarrow{*} \perp
$$

Month addition is ambiguous iff
the resulting day exceeds the number of days of the resulting month
\Longrightarrow core result needed for our static analysis

Rounding-insensitivity Static Analysis

Meaningful ambiguities

$$
\text { d + } 1 \text { month <= April } 152024
$$

Meaningful ambiguities

$$
\text { d + } 1 \text { month <= April } 152024
$$

- No rounding? Safe

Meaningful ambiguities

$$
\text { d + } 1 \text { month <= April } 152024
$$

- No rounding? Safe
- Otherwise, the rounding of d + 1 month will not change the comparison.

Meaningful ambiguities

$$
\text { d + } 1 \text { month <= April } 152024
$$

- No rounding? Safe
- Otherwise, the rounding of $\mathrm{d}+1$ month will not change the comparison.

$$
\text { d + } 1 \text { month <= April } 302024
$$

Meaningful ambiguities

$$
\text { d + } 1 \text { month <= April } 152024
$$

- No rounding? Safe
- Otherwise, the rounding of $\mathrm{d}+1$ month will not change the comparison.

$$
\text { d + } 1 \text { month <= April } 302024
$$

- Rounding-sensitive comparison d = March 312024

Meaningful ambiguities

$$
\text { d + } 1 \text { month <= April } 152024
$$

- No rounding? Safe
- Otherwise, the rounding of $\mathrm{d}+1$ month will not change the comparison.

$$
\text { d + } 1 \text { month <= April } 302024
$$

- Rounding-sensitive comparison d = March 312024
\Longrightarrow Prove rounding-insensitivity of an expression e,

Meaningful ambiguities

$$
\text { d + } 1 \text { month <= April } 152024
$$

- No rounding? Safe
- Otherwise, the rounding of $\mathrm{d}+1$ month will not change the comparison.

$$
\text { d + } 1 \text { month <= April } 302024
$$

- Rounding-sensitive comparison d = March 312024
\Longrightarrow Prove rounding-insensitivity of an expression $e, \mathbb{E}_{\uparrow} \llbracket e \rrbracket=\mathbb{E}_{\downarrow} \llbracket e \rrbracket$

Meaningful ambiguities

$$
\text { d + } 1 \text { month <= April } 152024
$$

- No rounding? Safe
- Otherwise, the rounding of $\mathrm{d}+1$ month will not change the comparison.

$$
\text { d + } 1 \text { month <= April } 302024
$$

- Rounding-sensitive comparison d = March 312024
\Longrightarrow Prove rounding-insensitivity of an expression $e, \mathbb{E}_{\uparrow} \llbracket e \rrbracket=\mathbb{E}_{\downarrow} \llbracket e \rrbracket$ To reduce the need for costly legal interpretations

Rounding-insensitivity Static Analysis

Abstracting dates in a fixed rounding mode

YMD domain

- Defines addition, accessors, projection, lexicographic comparison

YMD domain

- Defines addition, accessors, projection, lexicographic comparison
- Translates constraints on dates into numerical constraints

YMD domain

- Defines addition, accessors, projection, lexicographic comparison
- Translates constraints on dates into numerical constraints date $d_{1} \rightsquigarrow$ ghost numerical variables $\mathrm{d}\left(d_{1}\right), \mathrm{m}\left(d_{1}\right), \mathrm{y}\left(d_{1}\right)$

YMD domain

- Defines addition, accessors, projection, lexicographic comparison
- Translates constraints on dates into numerical constraints date $d_{1} \rightsquigarrow$ ghost numerical variables $\mathrm{d}\left(d_{1}\right), \mathrm{m}\left(d_{1}\right), \mathrm{y}\left(d_{1}\right)$
- Acts as a functor lifting a numerical abstract domain

YMD domain

- Defines addition, accessors, projection, lexicographic comparison
- Translates constraints on dates into numerical constraints date $d_{1} \rightsquigarrow$ ghost numerical variables $\mathrm{d}\left(d_{1}\right), \mathrm{m}\left(d_{1}\right), \mathrm{y}\left(d_{1}\right)$
- Acts as a functor lifting a numerical abstract domain

$$
\mathrm{d}\left(d_{1}\right) \in[1,31] \wedge \mathrm{m}\left(d_{1}\right) \in[1,12] \wedge \mathrm{y}\left(d_{1}\right)=2024: \text { all valid dates of } 2024
$$

YMD domain

- Defines addition, accessors, projection, lexicographic comparison
- Translates constraints on dates into numerical constraints date $d_{1} \rightsquigarrow$ ghost numerical variables $\mathrm{d}\left(d_{1}\right), \mathrm{m}\left(d_{1}\right), \mathrm{y}\left(d_{1}\right)$
- Acts as a functor lifting a numerical abstract domain

$$
\mathrm{d}\left(d_{1}\right) \in[1,31] \wedge \mathrm{m}\left(d_{1}\right) \in[1,12] \wedge \mathrm{y}\left(d_{1}\right)=2024: \text { all valid dates of } 2024
$$

$$
\gamma_{\mathcal{N}}: \mathcal{N}^{\sharp} \rightarrow \mathcal{P}(\mathcal{V} \rightarrow \mathbb{Z})
$$

$$
\gamma_{\text {YMD }}:\left\{\begin{array}{rlr}
\mathcal{N}^{\sharp} & \rightarrow \mathcal{P}(\mathcal{V} \rightarrow \mathcal{D}) \\
n^{\sharp} & \mapsto \bigcup_{\rho \in \gamma_{\mathcal{N}}\left(n^{\sharp}\right)}\{e \mid \forall v \in \operatorname{dom}(e), e(v)=(y, m, d) \wedge \operatorname{valid}(y, m, d) \\
& & \wedge y=\rho(\mathrm{y}(v)) \wedge m=\rho(\mathrm{m}(v)) \wedge d=\rho(\mathrm{d}(v))\}
\end{array}\right.
$$

YMD domain - month addition

Goal

Given a rounding mode, compute resulting dates from $d^{\#}+\frac{\#}{m} n$, where $d^{\#}$ represents a set of dates.

Soundly derived from the ambiguous addition theorem.

YMD domain - month addition

Goal

Given a rounding mode, compute resulting dates from $d^{\#}+\frac{\#}{m} n$, where $d^{\#}$ represents a set of dates.

Soundly derived from the ambiguous addition theorem.
Algorithm: compute resulting month, year, then 4 cases:

- No rounding,
- Rounding, 30-day month,
- Rounding, non-leap years 28 Feb,
- Rounding, leap years, 29 Feb.

Partitioning used in practice.

YMD domain - month addition (II)

```
type case = expr * state
type cases = case list
let switch abs =
    List.map (fun (cond : expr, k : state -> case) -> k (assume cond abs))
let add_months (r: rnd) ((d, m, y): var^3) (nb_m: int) (abs: state): cases =
    let res_m: expr = 1 + (m - 1 + nb_m) % 12 in
    let res_y: expr = y + (m - 1 + nb_m) / 12 in
    switch abs
    [
        mk_true,
            mk_date d res_m res_y;
        d > 30 && is_one_of res_m [Apr;Jun;Sep;Nov],
            round r 30 res_m res_y;
        d > 28 && res_m = Feb && not (is_leap res_y),
            round r 28 res_m res_y;
        d > 29 && res_m = Feb && is_leap res_y,
            round r 29 res_m res_y
    ]
```


Choosing the right numerical abstract domains

date $d 1=$ rand_date($)$; date $d 2=d 1+1$ month; rounding down.

Choosing the right numerical abstract domains

date d 1 = rand_date(); date $\mathrm{d} 2=\mathrm{d} 1+1$ month; rounding down.

- No concrete values on d1
- Intervals would be imprecise
\Longrightarrow relational abstract domains needed!

Choosing the right numerical abstract domains

date d 1 = rand_date(); date $\mathrm{d} 2=\mathrm{d} 1+1$ month; rounding down.

- No concrete values on d1
- Intervals would be imprecise
\Longrightarrow relational abstract domains needed!
4 cases apply, including:

Choosing the right numerical abstract domains

date d 1 = rand_date(); date $\mathrm{d} 2=\mathrm{d} 1+1$ month; rounding down.

- No concrete values on d1
- Intervals would be imprecise
\Longrightarrow relational abstract domains needed!
4 cases apply, including:
- 30-day month

$$
\mathrm{d}(d 1)=31, \mathrm{~m}(d 1) \in\{\text { Mar, May, Aug, Oct }\}, \mathrm{m}(d 2)=\mathrm{m}(d 1)+1, \mathrm{y}(d 2)=\mathrm{y}(d 1)
$$

Choosing the right numerical abstract domains

date d 1 = rand_date(); date $\mathrm{d} 2=\mathrm{d} 1+1$ month; rounding down.

- No concrete values on d1
- Intervals would be imprecise
\Longrightarrow relational abstract domains needed!
4 cases apply, including:
- 30-day month

$$
d(d 1)=31, \underbrace{m(d 1) \in\{\text { Mar, May, Aug, Oct }\}}_{\text {Bounded set of ints }}, m(d 2)=m(d 1)+1, y(d 2)=y(d 1)
$$

Choosing the right numerical abstract domains

date d 1 = rand_date(); date $\mathrm{d} 2=\mathrm{d} 1+1$ month; rounding down.

- No concrete values on d1
- Intervals would be imprecise
\Longrightarrow relational abstract domains needed!
4 cases apply, including:
- 30-day month
$d(d 1)=31, \underbrace{m(d 1) \in\{\text { Mar, May, Aug, Oct }\}}_{\text {Bounded set of ints }}, \underbrace{m(d 2)=m(d 1)+1, y(d 2)=y(d 1)}_{\text {Polyhedra }}$

Choosing the right numerical abstract domains

date d 1 = rand_date(); date $\mathrm{d} 2=\mathrm{d} 1+1$ month; rounding down.

- No concrete values on d1
- Intervals would be imprecise

\Longrightarrow relational abstract domains needed!

4 cases apply, including:

- 30-day month
$d(d 1)=31, \underbrace{m(d 1) \in\{\text { Mar, May, Aug, Oct }\}}_{\text {Bounded set of ints }}, \underbrace{m(d 2)=m(d 1)+1, y(d 2)=y(d 1)}_{\text {Polyhedra }}$
- No rounding $d(d 1)=d(d 2), m(d 2) \equiv_{12} m(d 1)+1, y(d 1) \leq y(d 2) \leq y(d 1)+1^{1}$

Choosing the right numerical abstract domains

date d 1 = rand_date(); date $\mathrm{d} 2=\mathrm{d} 1+1$ month; rounding down.

- No concrete values on d1
- Intervals would be imprecise

\Longrightarrow relational abstract domains needed!

4 cases apply, including:

- 30-day month
$d(d 1)=31, \underbrace{m(d 1) \in\{\text { Mar, May, Aug, Oct }\}}_{\text {Bounded set of ints }}, \underbrace{m(d 2)=m(d 1)+1, y(d 2)=y(d 1)}_{\text {Polyhedra }}$
- No rounding $\mathrm{d}(\mathrm{d} 1)=\mathrm{d}(\mathrm{d} 2), \underbrace{\mathrm{m}(\mathrm{d} 2) \equiv_{12} \mathrm{~m}(\mathrm{~d} 1)+1}_{\text {Linear congruence domain }}, \mathrm{y}(\mathrm{d} 1) \leq \mathrm{y}(\mathrm{d} 2) \leq \mathrm{y}(\mathrm{d} 1)+1^{1}$

Choosing the right numerical abstract domains

date d 1 = rand_date(); date $\mathrm{d} 2=\mathrm{d} 1+1$ month; rounding down.

- No concrete values on d1
- Intervals would be imprecise

\Longrightarrow relational abstract domains needed!

4 cases apply, including:

- 30-day month

$$
d(d 1)=31, \underbrace{m(d 1) \in\{\text { Mar, May, Aug, Oct }\}}_{\text {Bounded set of ints }}, \underbrace{m(d 2)=m(d 1)+1, y(d 2)=y(d 1)}_{\text {Polyhedra }}
$$

- No rounding $\mathrm{d}(\mathrm{d} 1)=\mathrm{d}(\mathrm{d} 2), \underbrace{\mathrm{m}(\mathrm{d} 2) \equiv_{12} \mathrm{~m}(\mathrm{~d} 1)+1}_{\text {Linear congruence domain }}, \mathrm{y}(\mathrm{d} 1) \leq \mathrm{y}(\mathrm{d} 2) \leq \mathrm{y}(\mathrm{d} 1)+1^{1}$

Rounding-insensitivity Static Analysis

Lifting to both rounding modes

Back to rounding-insensitivity detection

- Semantics on product programs with both rounding modes.

Back to rounding-insensitivity detection

- Semantics on product programs with both rounding modes.

$$
\mathbb{E}_{r} \llbracket e \rrbracket: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\text { Val }), r \in\{\uparrow, \downarrow\}
$$

Back to rounding-insensitivity detection

- Semantics on product programs with both rounding modes.

$$
\mathbb{E}_{r} \llbracket e \rrbracket: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\text { Val }), r \in\{\uparrow, \downarrow\} \quad \rightsquigarrow \quad \mathbb{E}_{\uparrow} \llbracket e \rrbracket: \mathcal{P}\left(\mathcal{E}^{2}\right) \rightarrow \mathcal{P}\left(\text { Val }^{2}\right)
$$

Back to rounding-insensitivity detection

- Semantics on product programs with both rounding modes.

$$
\begin{array}{r}
\mathbb{E}_{r} \llbracket e \rrbracket: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\text { Val }), r \in\{\uparrow, \downarrow\} \quad \rightsquigarrow \mathbb{E}_{\uparrow} \llbracket e \rrbracket: \mathcal{P}\left(\mathcal{E}^{2}\right) \rightarrow \mathcal{P}\left(\text { Val }^{2}\right) \\
\mathbb{E}_{\downarrow} \llbracket e_{1}+e_{2} \rrbracket(D)=\bigcup_{\left(\rho_{\uparrow}, \rho_{\downarrow}\right) \in \mathcal{D}}\left\{\left(v_{1}^{\uparrow}+v_{2}^{\uparrow}, v_{1}^{\downarrow}+v_{2}^{\downarrow}\right) \mid\left(v_{1}^{\uparrow}, v_{1}^{\downarrow}\right)=\mathbb{E}_{\downarrow} \llbracket e_{1} \rrbracket \rho_{\uparrow},\right. \\
\left.\left(v_{2}^{\uparrow}, v_{2}^{\downarrow}\right)=\mathbb{E}_{\uparrow} \llbracket e_{2} \rrbracket \rho_{\downarrow}\right\}
\end{array}
$$

Back to rounding-insensitivity detection

- Semantics on product programs with both rounding modes.

$$
\begin{array}{r}
\mathbb{E}_{r} \llbracket e \rrbracket: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\text { Val }), r \in\{\uparrow, \downarrow\} \quad \rightsquigarrow \mathbb{E}_{\uparrow} \llbracket e \rrbracket: \mathcal{P}\left(\mathcal{E}^{2}\right) \rightarrow \mathcal{P}\left(\mathrm{Val}^{2}\right) \\
\mathbb{E}_{\uparrow} \llbracket e_{1}+e_{2} \rrbracket(D)=\bigcup_{\left(\rho_{\uparrow}, \rho_{\downarrow}\right) \in \mathcal{D}}\left\{\left(v_{1}^{\uparrow}+v_{2}^{\uparrow}, v_{1}^{\downarrow}+v_{2}^{\downarrow}\right) \mid\left(v_{1}^{\uparrow}, v_{1}^{\downarrow}\right)=\mathbb{E}_{\downarrow} \llbracket e_{1} \rrbracket \rho_{\uparrow},\right. \\
\left.\left(v_{2}^{\uparrow}, v_{2}^{\downarrow}\right)=\mathbb{E}_{\uparrow} \llbracket e_{2} \rrbracket \rho_{\downarrow}\right\}
\end{array}
$$

$$
\mathbb{E}_{\uparrow} \llbracket \text { rand_date }() \rrbracket(D)=\left\{(d, d) \mid d \in \mathbb{Z}^{3}, \operatorname{valid}(d)\right\}
$$

Back to rounding-insensitivity detection

- Semantics on product programs with both rounding modes.

$$
\begin{array}{r}
\mathbb{E}_{r} \llbracket e \rrbracket: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\text { Val }), r \in\{\uparrow, \downarrow\} \quad \rightsquigarrow \mathbb{E}_{\uparrow} \llbracket e \rrbracket: \mathcal{P}\left(\mathcal{E}^{2}\right) \rightarrow \mathcal{P}\left(\text { Val }^{2}\right) \\
\mathbb{E}_{\downarrow} \llbracket e_{1}+e_{2} \rrbracket(D)=\bigcup_{\left(\rho_{\uparrow}, \rho_{\downarrow}\right) \in \mathcal{D}}\left\{\left(v_{1}^{\uparrow}+v_{2}^{\uparrow}, v_{1}^{\downarrow}+v_{2}^{\downarrow}\right) \mid\left(v_{1}^{\uparrow}, v_{1}^{\downarrow}\right)=\mathbb{E}_{\downarrow} \llbracket e_{1} \rrbracket \rho_{\uparrow},\right. \\
\left.\left(v_{2}^{\uparrow}, v_{2}^{\downarrow}\right)=\mathbb{E}_{\uparrow} \llbracket e_{2} \rrbracket \rho_{\downarrow}\right\}
\end{array}
$$

$$
\mathbb{E}_{\uparrow} \llbracket r \text { rand_date }() \rrbracket(D)=\left\{(d, d) \mid d \in \mathbb{Z}^{3}, \operatorname{valid}(d)\right\}
$$

- $\operatorname{sync}(e)$ holds iff e is rounding-insensitive.

Back to rounding-insensitivity detection

- Semantics on product programs with both rounding modes.

$$
\begin{array}{r}
\mathbb{E}_{r}^{\llbracket \rrbracket \rrbracket: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\text { Val }), r \in\{\uparrow, \downarrow\} \quad \rightsquigarrow \quad \mathbb{E}_{\downarrow} \llbracket e \rrbracket: \mathcal{P}\left(\mathcal{E}^{2}\right) \rightarrow \mathcal{P}\left(\text { Val }^{2}\right)} \begin{aligned}
\mathbb{E}_{\uparrow} \llbracket e_{1}+e_{2} \rrbracket(D)=\bigcup_{\left(\rho_{\uparrow}, \rho_{\downarrow}\right) \in \mathcal{D}}\left\{\left(v_{1}^{\uparrow}+v_{2}^{\uparrow}, v_{1}^{\downarrow}+v_{2}^{\downarrow}\right) \mid\left(v_{1}^{\uparrow}, v_{1}^{\downarrow}\right)\right. & =\mathbb{E}_{\downarrow} \llbracket e_{1} \rrbracket \rho_{\uparrow}, \\
\left(v_{2}^{\uparrow}, v_{2}^{\downarrow}\right) & \left.=\mathbb{E}_{\downarrow} \llbracket e_{2} \rrbracket \rho_{\downarrow}\right\}
\end{aligned}
\end{array}
$$

$$
\mathbb{E}_{\uparrow} \llbracket \operatorname{rand_ date}() \rrbracket(D)=\left\{(d, d) \mid d \in \mathbb{Z}^{3}, \text { valid }(d)\right\}
$$

- $\operatorname{sync}(e)$ holds iff e is rounding-insensitive.

$$
\mathbb{E}_{\downarrow} \llbracket \operatorname{sync}(e) \rrbracket(D)=\bigcup_{\left(\rho_{\uparrow}, \rho_{\downarrow}\right) \in \mathcal{D}}\left\{\left(b_{u}==b_{d}, b_{u}==b_{d}\right) \mid\left(b_{u}, b_{d}\right)=\mathbb{E}_{\downarrow} \llbracket e \rrbracket\left(\rho_{\uparrow}, \rho_{\downarrow}\right)\right\}
$$

Back to rounding-insensitivity detection

- Semantics on product programs with both rounding modes.

$$
\begin{array}{r}
\mathbb{E}_{r} \llbracket e \rrbracket: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\text { Val }), r \in\{\uparrow, \downarrow\} \quad \rightsquigarrow \mathbb{E}_{\uparrow} \llbracket e \rrbracket: \mathcal{P}\left(\mathcal{E}^{2}\right) \rightarrow \mathcal{P}\left(\mathrm{Val}^{2}\right) \\
\mathbb{E}_{\downarrow} \llbracket e_{1}+e_{2} \rrbracket(D)=\bigcup_{\left(\rho_{\uparrow}, \rho_{\downarrow}\right) \in \mathcal{D}}\left\{\left(v_{1}^{\uparrow}+v_{2}^{\uparrow}, v_{1}^{\downarrow}+v_{2}^{\downarrow}\right) \mid\left(v_{1}^{\uparrow}, v_{1}^{\downarrow}\right)=\mathbb{E}_{\downarrow} \llbracket e_{1} \rrbracket \rho_{\uparrow}\right. \\
\left.\left(v_{2}^{\uparrow}, v_{2}^{\downarrow}\right)=\mathbb{E}_{\uparrow} \llbracket e_{2} \rrbracket \rho_{\downarrow}\right\}
\end{array}
$$

$$
\mathbb{E}_{\uparrow} \llbracket \text { rand_date }() \rrbracket(D)=\left\{(d, d) \mid d \in \mathbb{Z}^{3}, \operatorname{valid}(d)\right\}
$$

- $\operatorname{sync}(e)$ holds iff e is rounding-insensitive.

$$
\mathbb{E}_{\uparrow} \llbracket \operatorname{sync}(e) \rrbracket(D)=\bigcup_{\left(\rho_{\uparrow}, \rho_{\downarrow}\right) \in \mathcal{D}}\left\{\left(b_{u}==b_{d}, b_{u}==b_{d}\right) \mid\left(b_{u}, b_{d}\right)=\mathbb{E}_{\downarrow} \llbracket \llbracket \rrbracket\left(\rho_{\uparrow}, \rho_{\downarrow}\right)\right\}
$$

- Inspired by Delmas, Ouadjaout, and Miné. "Static Analysis of Endian Portability by Abstract Interpretation". SAS 2021.

Abstract double semantics

Shallow variable duplication depending on their rounding mode.

Abstract double semantics

Shallow variable duplication depending on their rounding mode.
date $\mathrm{d} 1=$ rand_date($)$; date $\mathrm{d} 2=\mathrm{d} 1+1$ month; double semantics

Abstract double semantics

Shallow variable duplication depending on their rounding mode. date $\mathrm{d} 1=$ rand_date($)$; date $\mathrm{d} 2=\mathrm{d} 1+1$ month; double semantics

- No rounding

$$
d(d 1)=d(d 2) \quad m(d 2) \equiv_{12} m(d 1)+1 \quad y(d 1) \leq y(d 2) \leq y(d 1)+1
$$

Abstract double semantics

Shallow variable duplication depending on their rounding mode.

date $\mathrm{d} 1=$ rand_date($)$; date $\mathrm{d} 2=\mathrm{d} 1+1$ month; double semantics

- No rounding

$$
d(d 1)=d(d 2) \quad m(d 2) \equiv_{12} m(d 1)+1 \quad y(d 1) \leq y(d 2) \leq y(d 1)+1
$$

- 30-day month

$$
\begin{aligned}
& \mathrm{d}(d 1)=31, \mathrm{~m}(d 1) \in\{\text { Mar, May, Aug, Sep }\} \\
& \downarrow \mathrm{d}(\mathrm{~d} 2)=30, \downarrow \mathrm{~m}(d 2) \in\{\text { Apr, Jun, Sep, Nov }\} \\
& \uparrow \mathrm{d}(d 2)=1, \uparrow \mathrm{~m}(d 2) \in\{\text { May, Jul, Oct, Dec }\} \\
& \downarrow \mathrm{y}(d 2)=\uparrow \mathrm{y}(\mathrm{~d} 2)=\mathrm{y}(\mathrm{~d} 1)
\end{aligned}
$$

- Open-source static analysis platform

Implementation into Mopsa

- Open-source static analysis platform
- C, Python, C+Python programs

Implementation into Mopsa

- Open-source static analysis platform
- C, Python, C+Python programs
- gitlab.com/mopsa/mopsa-analyzer
D.bidates (9) U.program (9) U.intraproc (9) U.ymd (9)
- Open-source static analysis platform
- C, Python, C+Python programs
- gitlab.com/mopsa/mopsa-analyzer

(9) Sequence

Reduced product

OUniversal
ODouble programs

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
3 date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

Extracted sample from French housing benefits

1 date current＝rand＿date（）；
2 date birthday＝rand＿date（）；
3 date intermediate＝birthday＋［2 years， 0 months， 0 days］；
4 date limit＝first＿day＿of（intermediate）；
5 assert（sync（current＜limit））；

5：assert（sync（current＜limit））；
ヘヘ＾ヘヘ＾＾＾＾＾＾＾＾＾＾＾
Desynchronization detected：（current＜limit）．Hints： \uparrow month（limit）$=3, \uparrow$ day（limit）$=1, \downarrow$ month（limit）$=2, \downarrow$ day（limit）$=1$ ， $\uparrow m o n t h(i n t e r m e d i a t e)=3, \uparrow d a y(i n t e r m e d i a t e)=1, ~ \downarrow m o n t h(i n t e r m e d i a t e)=2$ ， \downarrow day（intermediate $)=28$ ，month（birthday）$=2$ ，day（birthday）$=29$ ， year（birthday）$=$［4］0，month（current）$=2$ ，day（current）$=[1,29]$ ， year（current）$=\uparrow$ year（intermediate）$=\uparrow y e a r($ limit $)$
$=\downarrow$ year（intermediate $)=\downarrow$ year（limit）$=$ year $($ birthday $)+2$

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
${ }_{3}$ date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < Computed, actual counter-example
Desynchronization detect个month(limit) $=3$, $\uparrow \operatorname{day}(l$ \uparrow month(intermediate) $=3$, \downarrow day (intermediate) = 28, year(birthday) =[4] 0, m year(current) $=$ 个year(int
$=\downarrow$ year(intermediate) $=\downarrow$ ycar(timt) - ycat(N+1 cimay) $<$

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
${ }_{3}$ date intermediate = birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < Computed, actual counter-example
Desynchronization detect个month(limit) $=3$, $\uparrow \operatorname{day}(l$

- current is in Feb. of year y $\uparrow m o n t h(i n t e r m e d i a t e)=3$ \downarrow day (intermediate) $=28$, year(birthday) =[4] 0, m year(current) $=$ 个year(int

Extracted sample from French housing benefits

1 date current＝rand＿date（）；
2 date birthday＝rand＿date（）；
${ }_{3}$ date intermediate $=$ birthday＋［2 years， 0 months， 0 days］；
4 date limit＝first＿day＿of（intermediate）；
5 assert（sync（current＜limit））；

5：assert（sync（current＜Computed，actual counter－example
Desynchronization detect个month（limit）＝3，个day（l \uparrow month（intermediate）$=3$ ，
－current is in Feb．of year y
\downarrow day（intermediate）＝28， year（birthday）＝［4］0，m year（current）$=$ 个year（int
$=\downarrow y e a r(i n t e r m e d i a t e)=\downarrow$ ycar（LIm＋L）－yeat（n＋1 cimay）L

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
${ }_{3}$ date intermediate $=$ birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < Computed, actual counter-example
Desynchronization detect \uparrow month (limit) $=3$, $\uparrow \operatorname{day}(1$ \uparrow month(intermediate) $=3$, \downarrow day (intermediate) $=28$, year(birthday) =[4] 0, m year(current) $=$ 个year(int
$=\downarrow$ year(intermediate) $=\downarrow$ ycartimit - ycat(o+1truay) <

Extracted sample from French housing benefits

1 date current = rand_date();
2 date birthday = rand_date();
${ }_{3}$ date intermediate $=$ birthday + [2 years, 0 months, 0 days];
4 date limit = first_day_of(intermediate);
5 assert(sync(current < limit));

5: assert(sync(current < Computed, actual counter-example
Desynchronization detect \uparrow month (limit) $=3$, $\uparrow \operatorname{day}(1$ $\uparrow m o n t h($ intermediate $)=3$ \downarrow day (intermediate) $=28$, year(birthday) =[4] 0, m year(current) $=\uparrow$ year(int

- current is in Feb. of year y
- birthday is 29 Feb. of leap year y - 2
- intermediate is either 28 Feb. or 1 March of y
- limit is either 1 Feb. or 1 March of y

Case Study: French Housing Benefits

Catala, a DSL for computational laws

Article D823-20 du code de la construction réglementaire

La prime de déménagement est attribuée aux personnes ou aux ménages ayant à charge au moins trois enfants nés ou à naître et qui s'installent dans un nouveau logement ouvrant droit à l'une des aides personnelles au logement au cours d'une période comprise entre le premier jour du mois civil suivant le troisième mois de grossesse au titre d'un enfant de rang trois ou plus et le dernier jour du mois précédant celui au cours duquel cet enfant atteint son deuxième anniversaire.
Cette prime est due si le droit à l'aide est ouvert dans un délai de six mois à compter de la date d'emménagement.

```
```catala
champ d'application ÉligibilitéPrimeDeDéménagement:
 règle condition_période_déménagement sous condition
 (selon informations.date_naissance_troisième_enfant_ou_plus
 sous forme
 -- PlusDeTroisEnfants de date_naissance_ou_grossesse:
 (selon date_naissance_ou_grossesse sous forme
 -- DateDeNaissance de date_naissance:
 date_courante < (premier_jour_du_mois de (date_naissance + 2 an))
 # ...
)
)
conséquence rempli
```

Merigoux, Chataing, and Protzenko. "Catala: a programming language for the law". 2021
Merigoux. "Experience report: implementing a real-world, medium-sized program derived from a
legislative specification". 2023

## Catala, a DSL for computational laws

## Article D823-20 du code de la construction réglementaire

La prime de déménagement est attribuée aux personnes ou aux ménages ayant à charge au moins trois enfants nés ou à naître et qui s'installent dans un nouveau logement ouvrant droit à l'une des aides personnelles au logement au cours d'une période comprise entre le premier jour du mois civil suivant le troisième mois de grossesse au titre d'un enfant de rang trois ou plus et le dernier jour du mois précédant celui au cours duquel cet enfant atteint son deuxième anniversaire.
Cette prime est due si le droit à l'aide est ouvert dans un délai de six mois à compter de la date d'emménagement.

```
```catala
champ d'application ÉligibilitéPrimeDeDéménagement:
    règle condition_période_déménagement sous condition
        (selon informations.date_naissance_troisième_enfant_ou_plus
        sous forme
        -- PlusDeTroisEnfants de date_naissance_ou_grossesse:
            (selon date_naissance_ou_grossesse sous forme
            -- DateDeNaissance de date_naissance:
            date_courante < (premier_jour_du_mois de (date_naissance + 2 an))
            # ...
        )
        )
    conséquence rempli
```

Merigoux, Chataing, and Protzenko. "Catala: a programming language for the law". 2021
Merigoux. "Experience report: implementing a real-world, medium-sized program derived from a
legislative specification". 2023

Case Study - Catala for the French Housing Benefits

Contributions to Catala

- Date-rounding library dates-calc

Case Study - Catala for the French Housing Benefits

Contributions to Catala

- Date-rounding library dates-calc
- Scope-level rounding mode configuration

Case Study - Catala for the French Housing Benefits

Contributions to Catala

- Date-rounding library dates-calc
- Scope-level rounding mode configuration
- Connection with static analysis

Case Study - Catala for the French Housing Benefits

Contributions to Catala

- Date-rounding library dates-calc
- Scope-level rounding mode configuration
- Connection with static analysis

French Housing Benefits

20,000 Loc of Catala code (including text spec.)

Date ambiguity detection pipeline

Date ambiguity detection pipeline

2 rounding-sensitive cases detected

Date ambiguity detection pipeline

2 rounding-sensitive cases detected
Intra-scope extraction for now

Date ambiguity detection pipeline

2 rounding-sensitive cases detected
Intra-scope extraction for now

Manual inter-scope extraction

16 additional cases:

- 10 can be proved safe (assuming current_date ≥ 2023)
- Other are real issues

Conclusion

Related Work

Survey of implementations

- Java, boost round down
- Python stdlib: no month addition
- Inconsistency in spreadsheets

Related Work

Survey of implementations

- Java, boost round down
- Python stdlib: no month addition
- Inconsistency in spreadsheets

Timezones, leap seconds \& co.
Recent Rocq formalization: Ana, Bedmar, Rodríguez, Reyes, Buñuel, and Joosten. "UTC Time, Formally Verified". CPP 2024

Related Work

Survey of implementations

- Java, boost round down
- Python stdlib: no month addition
- Inconsistency in spreadsheets

Floating-point arithmetic

- FP widely used \& more complex!
- Different rounding modes
- No analysis of rounding-sensitivity?

Timezones, leap seconds \& co.
Recent Rocq formalization: Ana, Bedmar, Rodríguez, Reyes, Buñuel, and Joosten. "UTC Time, Formally Verified". CPP 2024

Conclusion

- Formal semantics of date computations

Conclusion

- Formal semantics of date computations
- OCaml library implementing our semantics (also in Python now!)

Conclusion

- Formal semantics of date computations
- OCaml library implementing our semantics (also in Python now!)
- Theorems verified in F^{\star}

Conclusion

- Formal semantics of date computations
- OCaml library implementing our semantics (also in Python now!)
- Theorems verified in F^{\star}
- Ambiguity-detection static analysis using Mopsa

Conclusion

- Formal semantics of date computations
- OCaml library implementing our semantics (also in Python now!)
- Theorems verified in F^{\star}
- Ambiguity-detection static analysis using Mopsa
- Case study on Catala encoding of French housing benefits

Conclusion

- Formal semantics of date computations
- OCaml library implementing our semantics (also in Python now!)
- Theorems verified in F^{\star}
- Ambiguity-detection static analysis using Mopsa
- Case study on Catala encoding of French housing benefits
- Comparison with mainstream implementations

Conclusion

- Formal semantics of date computations
- OCaml library implementing our semantics (also in Python now!)
- Theorems verified in F^{\star}
- Ambiguity-detection static analysis using Mopsa
- Case study on Catala encoding of French housing benefits
- Comparison with mainstream implementations

Artefact \& paper available!

Conclusion

- Formal semantics of date computations
- OCaml library implementing our semantics (also in Python now!)
- Theorems verified in F^{\star}
- Ambiguity-detection static analysis using Mopsa
- Case study on Catala encoding of French housing benefits
- Comparison with mainstream implementations

Artefact \& paper available!

Formalizing Date Arithmetic and Statically Detecting Ambiguities for the Law

Questions

Raphaël Monat, Aymeric Fromherz, Denis Merigoux

rmonat.fr

Inría

