
Easing implementation&maintenance of
academic static analyzers

Raphaël Monat
SyCoMoRES team

rmonat.fr

SemAntique
20 September 2024

rmonat.fr

Introduction

Motivation

Academic research around static analysis

Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

1

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

1

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable

I Eases research:
• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

1

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

1

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

1

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming

I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

1

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

1

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

1

This talk

Since 2017 Development of the Mopsa static analysis platform

This talk shares our experience and approach in Mopsa
Afterwards continue the conversation and increase sharing of practices

Exclamation-Triangle Experience report; some things might be folklore.

2

This talk

Since 2017 Development of the Mopsa static analysis platform
This talk shares our experience and approach in Mopsa

Afterwards continue the conversation and increase sharing of practices

Exclamation-Triangle Experience report; some things might be folklore.

2

This talk

Since 2017 Development of the Mopsa static analysis platform
This talk shares our experience and approach in Mopsa
Afterwards continue the conversation and increase sharing of practices

Exclamation-Triangle Experience report; some things might be folklore.

2

This talk

Since 2017 Development of the Mopsa static analysis platform
This talk shares our experience and approach in Mopsa
Afterwards continue the conversation and increase sharing of practices

Exclamation-Triangle Experience report; some things might be folklore.

2

Overview of Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Goals: explore new designs, ease development of (relational) analyses

One AST to rule them all

Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

Unified domain signature

PEN Semantic rewriting
PUZZLE-PIECE Loose coupling
MICROSCOPE Observability

DAG of abstractions

DICE-D20 Relational domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

3

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Goals: explore new designs, ease development of (relational) analyses

One AST to rule them all

Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

Unified domain signature

PEN Semantic rewriting
PUZZLE-PIECE Loose coupling
MICROSCOPE Observability

DAG of abstractions

DICE-D20 Relational domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

3

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Goals: explore new designs, ease development of (relational) analyses

One AST to rule them all

Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

Unified domain signature

PEN Semantic rewriting
PUZZLE-PIECE Loose coupling
MICROSCOPE Observability

DAG of abstractions

DICE-D20 Relational domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

3

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Goals: explore new designs, ease development of (relational) analyses

One AST to rule them all

Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

Unified domain signature

PEN Semantic rewriting
PUZZLE-PIECE Loose coupling
MICROSCOPE Observability

DAG of abstractions

DICE-D20 Relational domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

3

gitlab.com/mopsa/mopsa-analyzer

Contributors (2018–2024, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.

4

Contributors (2018–2024, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.

4

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]

Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

5

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

5

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

5

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

5

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs

I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

5

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]

I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

5

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]

I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

5

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]

I Sufficient precondition inference [MM24]

5

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

5

Works around Mopsa – II

Software Verification Competition
We won the “SoftwareSystems” track of SV-Comp 2024 [Mon+24]!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score 6

Outline

1 Providing transparent analysis results

2 Avoiding regressions

3 Easing debugging

4 A plug-in system of analysis observers

7

Providing transparent analysis results

Raising the bar in static analyzer transparency

$ static-analysis-tool file

...
No errors found

What has been checked? What has not?

8

Raising the bar in static analyzer transparency

$ static-analysis-tool file
...

No errors found

What has been checked? What has not?

8

Raising the bar in static analyzer transparency

$ static-analysis-tool file
...
No errors found

What has been checked? What has not?

8

Raising the bar in static analyzer transparency

$ static-analysis-tool file
...
No errors found

What has been checked? What has not?

8

Mopsa’s approach to being transparent – at a high level

if a# 6v p# then
add_alarm a# p#

if a# 6v p# then
add_alarm a# p#

else
add_safe_check p#

9

Mopsa’s approach to being transparent – at a high level

if a# 6v p# then
add_alarm a# p#

if a# 6v p# then
add_alarm a# p#

else
add_safe_check p#

9

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context

I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt

Itv Poly

x++

Safe Safe

y++

Alarm Safe

Selectivity

50% 100%

10

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt

Itv Poly

x++

Safe Safe

y++

Alarm Safe

Selectivity

50% 100%

10

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt

Itv Poly

x++

Safe Safe

y++

Alarm Safe

Selectivity

50% 100%

10

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt

Itv Poly

x++

Safe Safe

y++

Alarm Safe

Selectivity

50% 100%

10

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt Itv

Poly

x++ Safe

Safe

y++ Alarm

Safe

Selectivity 50%

100%

10

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt Itv Poly
x++ Safe Safe
y++ Alarm Safe
Selectivity 50% 100%

10

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement
I “2,756 alarms” 87% checks proved correct – “selectivity”
I Program size “expression complexity”

Analysis of coreutils fmt

11

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement

I “2,756 alarms” 87% checks proved correct – “selectivity”
I Program size “expression complexity”

Analysis of coreutils fmt

11

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement
I “2,756 alarms” 87% checks proved correct – “selectivity”

I Program size “expression complexity”

Analysis of coreutils fmt

11

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement
I “2,756 alarms” 87% checks proved correct – “selectivity”
I Program size “expression complexity”

Analysis of coreutils fmt

11

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement
I “2,756 alarms” 87% checks proved correct – “selectivity”
I Program size “expression complexity”

Analysis of coreutils fmt

11

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x)

, handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

12

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

12

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash

7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

12

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently

7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

12

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently

7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

12

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

12

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect

4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

12

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters

5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

12

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

12

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

12

Avoiding regressions

Avoiding regressions

=⇒ check for precision changes

Benchmarks with precision oracles

I Know whether a given alarm should be raised
I Based on manual analysis, not scalable
I NIST’s Juliet Benchmarks, SV-Comp labeling of tasks (coarse)
I Can provide absolute precision measure

Otherwise: relative precision measures, rely on our selectivity computation.

13

Avoiding regressions

=⇒ check for precision changes

Benchmarks with precision oracles

I Know whether a given alarm should be raised
I Based on manual analysis, not scalable
I NIST’s Juliet Benchmarks, SV-Comp labeling of tasks (coarse)
I Can provide absolute precision measure

Otherwise: relative precision measures, rely on our selectivity computation.

13

Avoiding regressions

=⇒ check for precision changes

Benchmarks with precision oracles

I Know whether a given alarm should be raised
I Based on manual analysis, not scalable
I NIST’s Juliet Benchmarks, SV-Comp labeling of tasks (coarse)
I Can provide absolute precision measure

Otherwise: relative precision measures, rely on our selectivity computation.

13

Comparing analysis reports

mopsa-diff script, used to compare:

I analysis report(s): either single output or set of outputs
I usecases: different configurations, different versions of Mopsa

--- baseline/touch-many-symbolic-args-a4.json
+++ pplite/touch-many-symbolic-args-a4.json

- time: 589.0760
+ time: 675.1761

+ parse-datetime.y:1399.44-46: alarm: Invalid memory access
- parse-datetime.y:965.56-71: alarm: Invalid memory access
- parse-datetime.y:980.25-52: alarm: Invalid memory access
- parse-datetime.y:1003.23-50: alarm: Invalid memory access
- parse-datetime.y:921.56-71: alarm: Invalid memory access
- parse-datetime.c:1733.2-8: alarm: Invalid memory access
- parse-datetime.y:781.26-41: alarm: Invalid memory access
- parse-datetime.y:772.23-38: alarm: Invalid memory access
- parse-datetime.y:755.23-38: alarm: Invalid memory access
- parse-datetime.y:973.25-52: alarm: Invalid memory access
- parse-datetime.y:610.8-41: alarm: Invalid memory access
- parse-datetime.y:743.25-40: alarm: Invalid memory access

139 reports compared
avg. time change +52.065s
avg. speedup -36%
new alarms 2
removed alarms 32
new assumptions 0
removed assumptions 0
new successes 0
new failures 0

14

Comparing analysis reports

mopsa-diff script, used to compare:

I analysis report(s): either single output or set of outputs
I usecases: different configurations, different versions of Mopsa

--- baseline/touch-many-symbolic-args-a4.json
+++ pplite/touch-many-symbolic-args-a4.json

- time: 589.0760
+ time: 675.1761

+ parse-datetime.y:1399.44-46: alarm: Invalid memory access
- parse-datetime.y:965.56-71: alarm: Invalid memory access
- parse-datetime.y:980.25-52: alarm: Invalid memory access
- parse-datetime.y:1003.23-50: alarm: Invalid memory access
- parse-datetime.y:921.56-71: alarm: Invalid memory access
- parse-datetime.c:1733.2-8: alarm: Invalid memory access
- parse-datetime.y:781.26-41: alarm: Invalid memory access
- parse-datetime.y:772.23-38: alarm: Invalid memory access
- parse-datetime.y:755.23-38: alarm: Invalid memory access
- parse-datetime.y:973.25-52: alarm: Invalid memory access
- parse-datetime.y:610.8-41: alarm: Invalid memory access
- parse-datetime.y:743.25-40: alarm: Invalid memory access

139 reports compared
avg. time change +52.065s
avg. speedup -36%
new alarms 2
removed alarms 32
new assumptions 0
removed assumptions 0
new successes 0
new failures 0

14

Comparing analysis reports

mopsa-diff script, used to compare:

I analysis report(s): either single output or set of outputs
I usecases: different configurations, different versions of Mopsa

--- baseline/touch-many-symbolic-args-a4.json
+++ pplite/touch-many-symbolic-args-a4.json

- time: 589.0760
+ time: 675.1761

+ parse-datetime.y:1399.44-46: alarm: Invalid memory access
- parse-datetime.y:965.56-71: alarm: Invalid memory access
- parse-datetime.y:980.25-52: alarm: Invalid memory access
- parse-datetime.y:1003.23-50: alarm: Invalid memory access
- parse-datetime.y:921.56-71: alarm: Invalid memory access
- parse-datetime.c:1733.2-8: alarm: Invalid memory access
- parse-datetime.y:781.26-41: alarm: Invalid memory access
- parse-datetime.y:772.23-38: alarm: Invalid memory access
- parse-datetime.y:755.23-38: alarm: Invalid memory access
- parse-datetime.y:973.25-52: alarm: Invalid memory access
- parse-datetime.y:610.8-41: alarm: Invalid memory access
- parse-datetime.y:743.25-40: alarm: Invalid memory access

139 reports compared
avg. time change +52.065s
avg. speedup -36%
new alarms 2
removed alarms 32
new assumptions 0
removed assumptions 0
new successes 0
new failures 0

14

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are

I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

15

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are

I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

15

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are

I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

15

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code

I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

15

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code
I open-source – for the sake of reproducible science

I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

15

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

15

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach

• ∗ stubs can be added in marginal cases

15

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

15

Some benchmarks

SeeSV-Comp.2024.results.

Benchmark # Tests Total LOC Time Precision

CWE121 2,508 234,930 3,064s 22.13%
CWE122 1,556 166,664 1,948s 25.84%
CWE124 758 93,372 961s 36.94%
CWE126 600 75,984 769s 46.83%
CWE127 758 89,022 963s 37.07%
CWE190 3,420 440,749 4,356s 78.13%
CWE191 2,622 340,884 3,236s 78.87%
CWE369 497 83,238 674s 70.42%
CWE415 190 17,990 228s 100.00%
CWE416 118 14,782 142s 67.80%
CWE469 18 1,520 22s 100.00%
CWE476 216 20,427 254s 100.00%

Table 1: Juliet benchmarks (non-relational
configuration, no partitioning).

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
comm 42.67s 97.32% 12,654
dircolors 34.82s 99.74% 20,062
dirname 21.68s 99.61% 11,307
echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774
getlimits 34.62s 98.54% 11,711
hostid 18.05s 99.65% 11,303
id 32.69s 99.04% 12,338
link 23.03s 99.52% 11,572
logname 20.36s 99.66% 11,307
mkfifo 34.87s 99.20% 11,807

Table 2: coreutils benchmarks (fully
symbolic arguments, relational analysis).

16

https://sv-comp.sosy-lab.org/2024/results/results-verified/

Some benchmarks

SeeSV-Comp.2024.results.

Benchmark # Tests Total LOC Time Precision

CWE121 2,508 234,930 3,064s 22.13%
CWE122 1,556 166,664 1,948s 25.84%
CWE124 758 93,372 961s 36.94%
CWE126 600 75,984 769s 46.83%
CWE127 758 89,022 963s 37.07%
CWE190 3,420 440,749 4,356s 78.13%
CWE191 2,622 340,884 3,236s 78.87%
CWE369 497 83,238 674s 70.42%
CWE415 190 17,990 228s 100.00%
CWE416 118 14,782 142s 67.80%
CWE469 18 1,520 22s 100.00%
CWE476 216 20,427 254s 100.00%

Table 1: Juliet benchmarks (non-relational
configuration, no partitioning).

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
comm 42.67s 97.32% 12,654
dircolors 34.82s 99.74% 20,062
dirname 21.68s 99.61% 11,307
echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774
getlimits 34.62s 98.54% 11,711
hostid 18.05s 99.65% 11,303
id 32.69s 99.04% 12,338
link 23.03s 99.52% 11,572
logname 20.36s 99.66% 11,307
mkfifo 34.87s 99.20% 11,807

Table 2: coreutils benchmarks (fully
symbolic arguments, relational analysis).

16

https://sv-comp.sosy-lab.org/2024/results/results-verified/

Some benchmarks

SeeSV-Comp.2024.results.

Benchmark # Tests Total LOC Time Precision

CWE121 2,508 234,930 3,064s 22.13%
CWE122 1,556 166,664 1,948s 25.84%
CWE124 758 93,372 961s 36.94%
CWE126 600 75,984 769s 46.83%
CWE127 758 89,022 963s 37.07%
CWE190 3,420 440,749 4,356s 78.13%
CWE191 2,622 340,884 3,236s 78.87%
CWE369 497 83,238 674s 70.42%
CWE415 190 17,990 228s 100.00%
CWE416 118 14,782 142s 67.80%
CWE469 18 1,520 22s 100.00%
CWE476 216 20,427 254s 100.00%

Table 1: Juliet benchmarks (non-relational
configuration, no partitioning).

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
comm 42.67s 97.32% 12,654
dircolors 34.82s 99.74% 20,062
dirname 21.68s 99.61% 11,307
echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774
getlimits 34.62s 98.54% 11,711
hostid 18.05s 99.65% 11,303
id 32.69s 99.04% 12,338
link 23.03s 99.52% 11,572
logname 20.36s 99.66% 11,307
mkfifo 34.87s 99.20% 11,807

Table 2: coreutils benchmarks (fully
symbolic arguments, relational analysis). 16

https://sv-comp.sosy-lab.org/2024/results/results-verified/

Easing debugging

Where static analyzers usually start from

I Analysis output Too coarse

I Printing abstract state using builtins Not interactive
I Interpretation trace Can be dozens of gigabytes of text

17

Where static analyzers usually start from

I Analysis output Too coarse
I Printing abstract state using builtins Not interactive

I Interpretation trace Can be dozens of gigabytes of text

17

Where static analyzers usually start from

I Analysis output Too coarse
I Printing abstract state using builtins Not interactive
I Interpretation trace Can be dozens of gigabytes of text

17

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints

• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

18

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints

• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

18

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints

• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

18

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location

• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

18

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression

• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

18

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

18

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation

I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

18

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

18

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state

• Projection on specific variables

I Some scripting capabilities

18

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

18

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

18

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

IDE support

I Language Server Protocol for linters (report alarms)

I Debug Adapter Protocol providing interactive engine interface
I Both protocols introduced by VSCode, supported by multiple IDEs

19

IDE support

I Language Server Protocol for linters (report alarms)
I Debug Adapter Protocol providing interactive engine interface

I Both protocols introduced by VSCode, supported by multiple IDEs

19

IDE support

I Language Server Protocol for linters (report alarms)
I Debug Adapter Protocol providing interactive engine interface
I Both protocols introduced by VSCode, supported by multiple IDEs

19

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs
I In practice, some bugs will only be detected in large codebases
I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

20

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs

I In practice, some bugs will only be detected in large codebases
I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

20

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs
I In practice, some bugs will only be detected in large codebases

I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

20

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs
I In practice, some bugs will only be detected in large codebases
I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

20

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs
I In practice, some bugs will only be detected in large codebases
I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

20

Testcase reduction – II

21

Testcase reduction – III

Internal errors debugging

I Highly helpful to significantly reduce debugging time of runtime errors
(Apron mishandlings, raised exceptions, …)

I Has been applied to coreutils programs, SV-Comp programs of 10,000+ LoC

Reference Origin Original LoC Reduced LoC Reduction

Issue 76 SV-Comp 28,737 18 99.94%
Issue 81 SV-Comp 15,627 8 99.95%
Issue 134 SV-Comp 17,411 10 99.94%
Issue 135 SV-Comp 7,016 12 99.83%
M.R. 130 coreutils 77,981 20 99.97%
M.R. 145 coreutils 77,427 19 99.98%

22

https://gitlab.com/mopsa/mopsa-analyzer/-/issues/76
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/81
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/134
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/135
https://gitlab.com/mopsa/mopsa-analyzer/-/merge_requests/130#note_1516013076
https://gitlab.com/mopsa/mopsa-analyzer/-/commit/34baaa483725cb81bacf6cc8144fc9c86a8bdd63

Testcase reduction – III

Internal errors debugging

I Highly helpful to significantly reduce debugging time of runtime errors
(Apron mishandlings, raised exceptions, …)

I Has been applied to coreutils programs, SV-Comp programs of 10,000+ LoC

Reference Origin Original LoC Reduced LoC Reduction

Issue 76 SV-Comp 28,737 18 99.94%
Issue 81 SV-Comp 15,627 8 99.95%
Issue 134 SV-Comp 17,411 10 99.94%
Issue 135 SV-Comp 7,016 12 99.83%
M.R. 130 coreutils 77,981 20 99.97%
M.R. 145 coreutils 77,427 19 99.98%

22

https://gitlab.com/mopsa/mopsa-analyzer/-/issues/76
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/81
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/134
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/135
https://gitlab.com/mopsa/mopsa-analyzer/-/merge_requests/130#note_1516013076
https://gitlab.com/mopsa/mopsa-analyzer/-/commit/34baaa483725cb81bacf6cc8144fc9c86a8bdd63

Testcase reduction – IV

Differential-configuration debugging

$ mopsa-c -config=confA.json file.c
Alarm: assertion failure
$ mopsa-c -config=confB.json file.c
No alarm

Has been used to simplify cases in externally reported soundness issues

23

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build

• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make

I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

24

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build

• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

24

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options

• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

24

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

24

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make

I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

24

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

24

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file 24

A plug-in system of analysis observers

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

25

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis

I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

25

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening

I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

25

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage

I Heuristic unsoundness/imprecision detection
I Profiling

25

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection

I Profiling

25

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

25

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

25

Coverage hooks

Coverage

I Global metric for the analysis’ results
I Good to detect issues in the instrumentation of the fully context-sensitive
analysis

No symbolic argument
./src/coreutils-8.30/src/fmt.c:

'main' 76% of 72 statements analyzed
'set_prefix' 100% of 12 statements analyzed
'same_para' 100% of 1 statement analyzed
'get_line' 100% of 30 statements analyzed
'fmt' 100% of 7 statements analyzed
'base_cost' 100% of 16 statements analyzed
'line_cost' 100% of 10 statements analyzed
'get_prefix' 100% of 18 statements analyzed

Symbolic arguments
./src/coreutils-8.30/src/fmt.c:

'main' 100% of 72 statements analyzed

26

Heuristic unsoundness/imprecision detection

Detection of unsound transfer functions
Bottom shouldn’t appear after some statements (such as assignments)

Detection of imprecise analysis
Warns when top expressions are created

Simplifies the search for sources of large imprecision (esp. with rewritings)

27

Profiling

Standard profiling
Measures which parts of Mopsa are the most time-consuming

Abstract profiling hook
Measures which parts of the analyzed program are the most time-consuming

I Loop-level profiling
I Function-level profiling

Mopsa analysis of coreutils fmt Search ic

check_punctuation

strlen

putchar_unlocked

line_cost

fmt

g..
fmt_paragraph

flush_paragraph
get_line

ge..

put_linebase_cost
strchr

main

fputs..

g..

get_paragraph

memmove

put_word

%program

put_space

put_paragraph

28

Profiling

Standard profiling
Measures which parts of Mopsa are the most time-consuming

Abstract profiling hook
Measures which parts of the analyzed program are the most time-consuming

I Loop-level profiling
I Function-level profiling

Mopsa analysis of coreutils fmt Search ic

check_punctuation

strlen

putchar_unlocked

line_cost

fmt

g..
fmt_paragraph

flush_paragraph
get_line

ge..

put_linebase_cost
strchr

main

fputs..

g..

get_paragraph

memmove

put_word

%program

put_space

put_paragraph

28

Profiling

Standard profiling
Measures which parts of Mopsa are the most time-consuming

Abstract profiling hook
Measures which parts of the analyzed program are the most time-consuming

I Loop-level profiling
I Function-level profiling

Mopsa analysis of coreutils fmt Search ic

check_punctuation

strlen

putchar_unlocked

line_cost

fmt

g..
fmt_paragraph

flush_paragraph
get_line

ge..

put_linebase_cost
strchr

main

fputs..

g..

get_paragraph

memmove

put_word

%program

put_space

put_paragraph

28

Profiling – II

Apron vs PPLite on Coreutils touch

I PPLite is 14% slower but more precise (11 alarms removed). Why?

I Suggestion from Enea Zaffanella: widening operator.
I Easy to confirm intuition!

29

Profiling – II

Apron vs PPLite on Coreutils touch

I PPLite is 14% slower but more precise (11 alarms removed). Why?
I Suggestion from Enea Zaffanella: widening operator.

I Easy to confirm intuition!

29

Profiling – II

Apron vs PPLite on Coreutils touch

I PPLite is 14% slower but more precise (11 alarms removed). Why?
I Suggestion from Enea Zaffanella: widening operator.
I Easy to confirm intuition!

29

Profiling – II

Apron vs PPLite on Coreutils touch

I PPLite is 14% slower but more precise (11 alarms removed). Why?
I Suggestion from Enea Zaffanella: widening operator.
I Easy to confirm intuition!

29

Conclusion

Related work

Lots of folklore

I Andreasen, Møller, and Nielsen. “Systematic approaches for increasing
soundness and precision of static analyzers”. 2017

I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP: Luo, Dolby, and Bodden. “MagpieBridge: A General Approach
to Integrating Static Analyses into IDEs and Editors (Tool Insights Paper)”. 2019

I Klinger, Christakis, and Wüstholz. “Differentially testing soundness and
precision of program analyzers”. 2019

I Taneja, Liu, and Regehr. “Testing static analyses for precision and soundness”.
2020

I Molle, Vandenbogaerde, and Roover. “Cross-Level Debugging for Static
Analysers”. 2023

30

Related work

Lots of folklore

I Andreasen, Møller, and Nielsen. “Systematic approaches for increasing
soundness and precision of static analyzers”. 2017

I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP: Luo, Dolby, and Bodden. “MagpieBridge: A General Approach
to Integrating Static Analyses into IDEs and Editors (Tool Insights Paper)”. 2019

I Klinger, Christakis, and Wüstholz. “Differentially testing soundness and
precision of program analyzers”. 2019

I Taneja, Liu, and Regehr. “Testing static analyses for precision and soundness”.
2020

I Molle, Vandenbogaerde, and Roover. “Cross-Level Debugging for Static
Analysers”. 2023

30

Related work

Lots of folklore

I Andreasen, Møller, and Nielsen. “Systematic approaches for increasing
soundness and precision of static analyzers”. 2017

I Frama-C & Goblint: flamegraphs, testcase reduction

I Leveraging LSP: Luo, Dolby, and Bodden. “MagpieBridge: A General Approach
to Integrating Static Analyses into IDEs and Editors (Tool Insights Paper)”. 2019

I Klinger, Christakis, and Wüstholz. “Differentially testing soundness and
precision of program analyzers”. 2019

I Taneja, Liu, and Regehr. “Testing static analyses for precision and soundness”.
2020

I Molle, Vandenbogaerde, and Roover. “Cross-Level Debugging for Static
Analysers”. 2023

30

Related work

Lots of folklore

I Andreasen, Møller, and Nielsen. “Systematic approaches for increasing
soundness and precision of static analyzers”. 2017

I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP: Luo, Dolby, and Bodden. “MagpieBridge: A General Approach
to Integrating Static Analyses into IDEs and Editors (Tool Insights Paper)”. 2019

I Klinger, Christakis, and Wüstholz. “Differentially testing soundness and
precision of program analyzers”. 2019

I Taneja, Liu, and Regehr. “Testing static analyses for precision and soundness”.
2020

I Molle, Vandenbogaerde, and Roover. “Cross-Level Debugging for Static
Analysers”. 2023

30

Related work

Lots of folklore

I Andreasen, Møller, and Nielsen. “Systematic approaches for increasing
soundness and precision of static analyzers”. 2017

I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP: Luo, Dolby, and Bodden. “MagpieBridge: A General Approach
to Integrating Static Analyses into IDEs and Editors (Tool Insights Paper)”. 2019

I Klinger, Christakis, and Wüstholz. “Differentially testing soundness and
precision of program analyzers”. 2019

I Taneja, Liu, and Regehr. “Testing static analyses for precision and soundness”.
2020

I Molle, Vandenbogaerde, and Roover. “Cross-Level Debugging for Static
Analysers”. 2023

30

Related work

Lots of folklore

I Andreasen, Møller, and Nielsen. “Systematic approaches for increasing
soundness and precision of static analyzers”. 2017

I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP: Luo, Dolby, and Bodden. “MagpieBridge: A General Approach
to Integrating Static Analyses into IDEs and Editors (Tool Insights Paper)”. 2019

I Klinger, Christakis, and Wüstholz. “Differentially testing soundness and
precision of program analyzers”. 2019

I Taneja, Liu, and Regehr. “Testing static analyses for precision and soundness”.
2020

I Molle, Vandenbogaerde, and Roover. “Cross-Level Debugging for Static
Analysers”. 2023

30

Related work

Lots of folklore

I Andreasen, Møller, and Nielsen. “Systematic approaches for increasing
soundness and precision of static analyzers”. 2017

I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP: Luo, Dolby, and Bodden. “MagpieBridge: A General Approach
to Integrating Static Analyses into IDEs and Editors (Tool Insights Paper)”. 2019

I Klinger, Christakis, and Wüstholz. “Differentially testing soundness and
precision of program analyzers”. 2019

I Taneja, Liu, and Regehr. “Testing static analyses for precision and soundness”.
2020

I Molle, Vandenbogaerde, and Roover. “Cross-Level Debugging for Static
Analysers”. 2023

30

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.

I Combination of existing techniques and new tools to debug & profile Mopsa

“std. tools on the concrete execution of the abstract interpreter”
 “new tools on abstract execution of target program”

Ongoing challenges

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

31

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa

“std. tools on the concrete execution of the abstract interpreter”
 “new tools on abstract execution of target program”

Ongoing challenges

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

31

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

31

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

31

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

31

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges

I Handling the exponential number of configurations

I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

31

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)

I Onboarding material
I Online availability, install-free tool testing

31

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material

I Online availability, install-free tool testing

31

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

31

References – I

[AMN17] Esben Sparre Andreasen, Anders Møller, and
Benjamin Barslev Nielsen. “Systematic approaches for increasing
soundness and precision of static analyzers”. In: ed. by Karim Ali and
Cristina Cifuentes. ACM, 2017, pp. 31–36. doi:
10.1145/3088515.3088521.

[Bau+22] Guillaume Bau et al. “Abstract interpretation of Michelson
smart-contracts”. In: ed. by Laure Gonnord and Laura Titolo. ACM,
2022, pp. 36–43. doi: 10.1145/3520313.3534660.

https://doi.org/10.1145/3088515.3088521
https://doi.org/10.1145/3520313.3534660

References – II

[DM19] David Delmas and Antoine Miné. “Analysis of Software Patches Using
Numerical Abstract Interpretation”. In: ed. by Bor-Yuh Evan Chang.
Lecture Notes in Computer Science. Springer, 2019, pp. 225–246. doi:
10.1007/978-3-030-32304-2_12.

[DOM21] David Delmas, Abdelraouf Ouadjaout, and Antoine Miné. “Static
Analysis of Endian Portability by Abstract Interpretation”. In: Lecture
Notes in Computer Science. Springer, 2021, pp. 102–123.

[JMO18] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout.
“Modular Static Analysis of String Manipulations in C Programs”. In:
ed. by Andreas Podelski. Lecture Notes in Computer Science. Springer,
2018, pp. 243–262. doi: 10.1007/978-3-319-99725-4_16.

https://doi.org/10.1007/978-3-030-32304-2_12
https://doi.org/10.1007/978-3-319-99725-4_16

References – III

[Jou+19] M. Journault et al. “Combinations of reusable abstract domains for a
multilingual static analyzer”. In: New York, USA, July 2019, pp. 1–17.

[KCW19] Christian Klinger, Maria Christakis, and Valentin Wüstholz.
“Differentially testing soundness and precision of program analyzers”.
In: ed. by Dongmei Zhang and Anders Møller. ACM, 2019, pp. 239–250.
doi: 10.1145/3293882.3330553.

[LDB19] Linghui Luo, Julian Dolby, and Eric Bodden. “MagpieBridge: A General
Approach to Integrating Static Analyses into IDEs and Editors (Tool
Insights Paper)”. In: ed. by Alastair F. Donaldson. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 21:1–21:25. doi:
10.4230/LIPICS.ECOOP.2019.21.

https://doi.org/10.1145/3293882.3330553
https://doi.org/10.4230/LIPICS.ECOOP.2019.21

References – IV

[Liv+15] Benjamin Livshits et al. “In defense of soundiness: a manifesto”. In:
Commun. ACM 2 (2015), pp. 44–46. doi: 10.1145/2644805.

[MFM24] Raphaël Monat, Aymeric Fromherz, and Denis Merigoux. “Formalizing
Date Arithmetic and Statically Detecting Ambiguities for the Law”. In:
ed. by Stephanie Weirich. Lecture Notes in Computer Science.
Springer, 2024, pp. 421–450. doi:
10.1007/978-3-031-57267-8_16.

https://doi.org/10.1145/2644805
https://doi.org/10.1007/978-3-031-57267-8_16

References – V

[MM24] Marco Milanese and Antoine Miné. “Generation of Violation Witnesses
by Under-Approximating Abstract Interpretation”. In: ed. by
Rayna Dimitrova, Ori Lahav, and Sebastian Wolff. Lecture Notes in
Computer Science. Springer, 2024, pp. 50–73. doi:
10.1007/978-3-031-50524-9_3.

[MOM20a] R. Monat, A. Ouadjaout, and A. Miné. “Static Type Analysis by Abstract
Interpretation of Python Programs”. In: LIPIcs. 2020.

[MOM20b] R. Monat, A. Ouadjaout, and A. Miné. “Value and allocation sensitivity
in static Python analyses”. In: ACM, 2020, pp. 8–13. doi:
10.1145/3394451.3397205.

https://doi.org/10.1007/978-3-031-50524-9_3
https://doi.org/10.1145/3394451.3397205

References – VI

[MOM21] R. Monat, A. Ouadjaout, and A. Miné. “A Multilanguage Static Analysis
of Python Programs with Native C Extensions”. In: 2021.

[Mon+24] Raphaël Monat et al. “Mopsa-C: Improved Verification for C Programs,
Simple Validation of Correctness Witnesses (Competition
Contribution)”. In: ed. by Bernd Finkbeiner and Laura Kovács. Lecture
Notes in Computer Science. Springer, 2024, pp. 387–392. doi:
10.1007/978-3-031-57256-2_26.

[MVR23] Mats Van Molle, Bram Vandenbogaerde, and Coen De Roover.
“Cross-Level Debugging for Static Analysers”. In: ed. by João Saraiva,
Thomas Degueule, and Elizabeth Scott. ACM, 2023, pp. 138–148. doi:
10.1145/3623476.3623512.

https://doi.org/10.1007/978-3-031-57256-2_26
https://doi.org/10.1145/3623476.3623512

References – VII

[OM20] A. Ouadjaout and A. Miné. “A Library Modeling Language for the Static
Analysis of C Programs”. In: ed. by David Pichardie and
Mihaela Sighireanu. Lecture Notes in Computer Science. Springer,
2020, pp. 223–247. doi: 10.1007/978-3-030-65474-0_11.

[PM24] Francesco Parolini and Antoine Miné. “Sound Abstract
Nonexploitability Analysis”. In: ed. by Rayna Dimitrova, Ori Lahav, and
Sebastian Wolff. Lecture Notes in Computer Science. Springer, 2024,
pp. 314–337. doi: 10.1007/978-3-031-50521-8_15.

[Reg+12] John Regehr et al. “Test-case reduction for C compiler bugs”. In: ed. by
Jan Vitek, Haibo Lin, and Frank Tip. ACM, 2012, pp. 335–346. doi:
10.1145/2254064.2254104.

https://doi.org/10.1007/978-3-030-65474-0_11
https://doi.org/10.1007/978-3-031-50521-8_15
https://doi.org/10.1145/2254064.2254104

References – VIII

[TLR20] Jubi Taneja, Zhengyang Liu, and John Regehr. “Testing static analyses
for precision and soundness”. In: ACM, 2020, pp. 81–93. doi:
10.1145/3368826.3377927.

[VMM23] Milla Valnet, Raphaël Monat, and Antoine Miné. “Analyse statique de
valeurs par interprétation abstraite de programmes fonctionnels
manipulant des types algébriques récursifs”. In: ed. by Timothy Bourke
and Delphine Demange. Praz-sur-Arly, France, Jan. 2023, pp. 211–242.

https://doi.org/10.1145/3368826.3377927

	Introduction
	

	Providing transparent analysis results
	

	Avoiding regressions
	

	Easing debugging
	

	A plug-in system of analysis observers
	

	Conclusion
	

	Appendix
	References

