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Research Scientist at Inria since Sep. 2022.

» Scheduling for real-time embedded systems

» Binary code analysis [Bal+19] (for worst-case execution time, security)
» Type systems for privacy
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» Source code
» Binary executable

Requirement: semantics of the program representation

= now build Analyzer (prog: i)
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Overview of Program Analysis Techniques
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» KLEE [CDE08]
» Symbolic execution survey [Bal+18]

» Concrete + symbolic = concolic execution [SMAO5; GKS05]

» Constraint solvers are currently SMT solvers: Z3 [MB08], CVC5 [Bar+22],
Alt-Ergo [Con+18], SMT-LIB interface [BFT16]
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e relying on an input grammar (generational)
» Gray-box: rely on instrumented coverage to direct fuzzing (cf. AFL++,

LibFuzzer)
» White-box = symbolic execution
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» Popular: easy to set basic version up

» Difficulty: correct instrumentation/directing of fuzzers
» May use lots of resources

» Sanitizers can be added to detect more bugs

» Google's OSS-FUZZ infrastructure



Overview of Program Analysis Techniques

Abstract Interpretation



» Approximate analysis, but ensure soundness and termination

10



» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.

10



» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.

10



» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.
o Alarms: deciding which ones are true

10



» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.

o Alarms: deciding which ones are true
e Usually cannot prove programs incorrect

10



» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.

o Alarms: deciding which ones are true
e Usually cannot prove programs incorrect

» Traditionally used for certification

10



» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.

o Alarms: deciding which ones are true
e Usually cannot prove programs incorrect

» Traditionally used for certification
o Airbus A380/A340 control commands with Astrée [Ber+10]

10



» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.

o Alarms: deciding which ones are true
e Usually cannot prove programs incorrect

» Traditionally used for certification

o Airbus A380/A340 control commands with Astrée [Ber+10]
o Nuclear power plants with Frama-C [BBY17]

10



» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.

o Alarms: deciding which ones are true
e Usually cannot prove programs incorrect

» Traditionally used for certification

o Airbus A380/A340 control commands with Astrée [Ber+10]
o Nuclear power plants with Frama-C [BBY17]

» Suggested entry-point: Miné [Min17]
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Core Ideas behind Abstract Interpretation
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Unsound analysis
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int x = rand();

» Concrete World
e Set of program states P(V — Z)
e Y={x—>n|0<n<2}

» Abstract World

e Represent multiple concrete states at once V — Intervals
o of = x> [0,2147483647]
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Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

» Contrary to symbolic execution, merge paths
» Rely on least upper bound operator (LI) and lattice structure

Precision tradeoffs
A computing an over-approximation, potential imprecision

» Concrete X ={x—n| —1<n<MMAn#10}
» Abstract of = x = [1,11]

—> may require better abstractions!

Merging can also be applied to arrays, ... 13
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Introduce generalization operator V
» Over-approximating least upper bound LI
» Ensures finite termination of loop iterations
» nb(iterations) does not depend on loop bound

1 int i = 0;

2 while(i < 100) {
3 i++;
4

}

Iteration  Values of i in loop

Iteration Values of i in loop
[0, 0]
0 [0, 0]
1 0,1 !
[0, 1] 1 0, 1]
99 [0, 99] i [0, 01 V[0, 1] = Eg +oo}
100 [0, 99] x

» Stabilization reached! . :
Precision can be recovered through decreasing

O large nb(iterations) terations
— i=0,99] 1



A Modern Abstract Interpreter: Mopsa
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Library C+Py Lloc  Tests Oftest %‘W% # checks
noise 1397  15/15  1.2s 99.7% 6690
cdistance 2345 2828 4.1s 98.0% 13716
1list 4515 167/194 1.5s 98.8% 36255
ahocorasick 4877 4692 1.2s 96.7% 6722
levenshtein 5798  17/17  53s 84.6% 4825
bitarray 5841 159/216  1.6s 94.9% 25566
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Benchmark  Time Selectivity # checks

basename  33.79s 98.65% 11,731
dirname 21.68s 99.61% 11,307

» Large support of libc echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774

through stubs
— ) pwd 22.04s 99.62% 11,502
» Check for all C runtime rmdir 39.00s  99.22% 11,699
errors sleep 23.79s 99.46% 11,546
» Ability to analyze real-world tee 3569s  98.76% 12,057
timeout 32.28s 98.51% 12,420

programs

true 9.55s 99.72% 10,774
uname 20.61s 99.52% 11,943
users 20.82s 99.06% 11,668
whoami 13.03s 99.66% 11,329

19



» Focus on bugs that a user can trigger through program interaction

20



» Focus on bugs that a user can trigger through program interaction
» Relies on combination of taint+value analysis

20



» Focus on bugs that a user can trigger through program interaction
» Relies on combination of taint+value analysis

Test suite Domain Analyzer Alarms Time
Coreutils Intervals  MOPSA 4,715 1:17:06
MOPSA-NEXP 1,217 (-74.19%)  1:28:42 (+15.05%)
Octagons  MOPSA 4,673 2:22:29
MOPSA-NEXP 1,209 (-74.13%)  2:43:06 (+14.47%)
Polyhedra MopPsa 4,651 2:12:21
MOPSA-NEXP 1,193 (-74.35%)  2:30:44 (+13.89%)
Juliet Intervals  MOPSA 49,957 11:32:24
MOPSA-NEXP 13,906 (72.16%) 11:48:51 (+2.38%)
Octagons  MOPSA 48,256 13:15:29
MOPSA-NEXP 13,631 (-71.75%)  13:41:47 (+3.31%)
Polyhedra MoPsA 48,256 12:54:21
MOPSA-NEXP 13,631 (71.75%) 13:21:26 (+3.50%)

20
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» Scalability (compositional function analyses)
» Usability

» Resource aware analyses, tailoring for best precision (ANR RAISIN)
» Handling of false alarms (ongoing work by Marco Milanese [MM24])

» Maintenance and development effort
» New languages, properties, specific programs

21
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