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Automated Program Analysis

Target program

Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!
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A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)
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Turing & Rice to the Rescue (or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Sound
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SoundComplete

∅
Rice’s theorem
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Overview of Program Analysis Techniques

Symbolic Execution



Symbolic Execution

Core idea: systematic generation of testcases

Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)
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Symbolic Execution (II)

Risk: combinatorial explosion (loops, . . .)

Further references

I KLEE [CDE08]
I Symbolic execution survey [Bal+18]
I Concrete + symbolic = concolic execution [SMA05; GKS05]
I Constraint solvers are currently SMT solvers: Z3 [MB08], CVC5 [Bar+22],
Alt-Ergo [Con+18], SMT-LIB interface [BFT16]
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Overview of Program Analysis Techniques

Fuzzing



Fuzzing

Core idea: throw random stuff at programs
cat /dev/random | ./target-program

Crash (segmentation fault, . . .) =⇒ you may be on to something!

Various shades of fuzzing

I Black-box: generates new inputs either by

• mutating input samples (mutational)
• relying on an input grammar (generational)

I Gray-box: rely on instrumented coverage to direct fuzzing (cf. AFL++,
LibFuzzer)

I White-box = symbolic execution
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Fuzzing (II)

Current state

I Popular: easy to set basic version up

I Difficulty: correct instrumentation/directing of fuzzers
I May use lots of resources
I Sanitizers can be added to detect more bugs
I Google’s OSS-FUZZ infrastructure
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Overview of Program Analysis Techniques

Abstract Interpretation



Abstract Interpretation

I Approximate analysis, but ensure soundness and termination

I Invented by Patrick and Radhia Cousot in the late 70s.
I Analysis tries to prove program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]
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Core Ideas behind Abstract Interpretation



Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

D] (abstract)

γ
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Interpret in non-standard domain
Program proved safe
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Merging Everything to Scale

Merging States
int x = rand();

I Concrete World

• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World

• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]
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Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

13
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Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇

I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]
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A Modern Abstract Interpreter: Mopsa



Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

15
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I A. Miné
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I G. Bau
I F. Parolini

I M. Milanese
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Maintainers in bold.
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Software-Verification Competition – Monat et al. [Mon+24]

I Tools have to

• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!
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Multilanguage Analysis – Monat, Ouadjaout, and Miné [MOM21]

Assessment 20% of the 200 most popular Python libraries rely on C code

Dangers: different values (Z vs. Int32); shared memory state

Our approach: Combined analysis of C, Python and interface code

Library C + Py. Loc Tests CLOCK/test # proved checks
# checks % # checks

noise 1397 15/15 1.2s 99.7% 6690
cdistance 2345 28/28 4.1s 98.0% 13716
llist 4515 167/194 1.5s 98.8% 36255
ahocorasick 4877 46/92 1.2s 96.7% 6722
levenshtein 5798 17/17 5.3s 84.6% 4825
bitarray 5841 159/216 1.6s 94.9% 25566

18

https://github.com/caseman/noise
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/ilanschnell/bitarray
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Coreutils – Ouadjaout and Miné [OM20]

I Large support of libc
through stubs

I Check for all C runtime
errors

I Ability to analyze real-world
programs

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
dirname 21.68s 99.61% 11,307
echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774
pwd 22.04s 99.62% 11,502
rmdir 39.00s 99.22% 11,699
sleep 23.79s 99.46% 11,546
tee 35.69s 98.76% 12,057
timeout 32.28s 98.51% 12,420
true 9.55s 99.72% 10,774
uname 20.61s 99.52% 11,943
users 20.82s 99.06% 11,668
whoami 13.03s 99.66% 11,329

19
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Non-exploitability – Parolini and Miné [PM24]

I Focus on bugs that a user can trigger through program interaction

I Relies on combination of taint+value analysis
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Future Work Around Mopsa

I Scalability (compositional function analyses)

I Usability

• Resource aware analyses, tailoring for best precision (ANR RAISIN)
• Handling of false alarms (ongoing work by Marco Milanese [MM24])

I Maintenance and development effort
I New languages, properties, specific programs
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