Raphael Monat - SyCOMORES team

rmonat.fr

CRIStAL's CyberSecurity Seminar s, Lu_ Universite
21 Oct. 2024 &Z de Lille

rmonat.fr

Introduction

Research Scientist at Inria since Sep. 2022.

Research Scientist at Inria since Sep. 2022.

Research Scientist at Inria since Sep. 2022.

Research Scientist at Inria since Sep. 2022.

Research Scientist at Inria since Sep. 2022.

Research Scientist at Inria since Sep. 2022.

» Scheduling for real-time embedded systems

Research Scientist at Inria since Sep. 2022.

» Scheduling for real-time embedded systems

» Binary code analysis [Bal+19] (for worst-case execution time, security)

Research Scientist at Inria since Sep. 2022.

» Scheduling for real-time embedded systems

» Binary code analysis [Bal+19] (for worst-case execution time, security)
» Type systems for privacy

Target program

Target program Program analyzer

Target program Program analyzer

Target program Program analyzer

[

Target program

Program analyzer

N N\

/

Target program

Program analyzer

v
?

\x

» Absence of runtime errors

» Absence of runtime errors
» Constant-time execution

» Absence of runtime errors
» Constant-time execution
» Endianness portability [DOM21]

» Absence of runtime errors
» Constant-time execution
» Endianness portability [DOM21]

» Absence of runtime errors » Open-source
» Constant-time execution
» Endianness portability [DOM21]

» Absence of runtime errors » Open-source
» Constant-time execution » Real-world
» Endianness portability [DOM21]

» Absence of runtime errors » Open-source

» Constant-time execution » Real-world
» Endianness portability [DOM21]

» Absence of runtime errors » Open-source

» Constant-time execution » Real-world
» Endianness portability [DOM21]

» Source code

» Absence of runtime errors » Open-source

» Constant-time execution » Real-world
» Endianness portability [DOM21]

» Source code
» Binary executable

» Absence of runtime errors » Open-source

» Constant-time execution » Real-world
» Endianness portability [DOM21]

» Source code
» Binary executable

Requirement: semantics of the program representation

» Absence of runtime errors » Open-source

» Constant-time execution » Real-world
» Endianness portability [DOM21]

» Source code
» Binary executable

Requirement: semantics of the program representation

= now build Analyzer (prog: i)

Sound All errors in program
reported by analyzer

All errors reported ~ Complete Sound All errors in program
by analyzer are reported by analyzer
replicable in program

Guaranteed Termination

All errors reported ~ Complete Sound All errors in program
by analyzer are reported by analyzer
replicable in program

Guaranteed Termination

All errors reported \ Complete All errors in program
by analyzer are reported by analyzer
replicable in program

Guaranteed Termination

All errors reported
by analyzer are
replicable in program

Complete All errors in program

reported by analyzer

[l Introduction

[2] Overview of Program Analysis Techniques
= Symbolic Execution
m Fuzzing

m Abstract Interpretation
3] Core Ideas behind Abstract Interpretation
[4 A Modern Abstract Interpreter: Mopsa

81 Conclusion

Overview of Program Analysis Techniques

Symbolic Execution

N U W o

Toy example

if x > @:
return -x
else:
if y < 10:
return y
else:
raise Exception

N U W o

Toy example

if x > @:
return -x
else:
if y < 10:
return y
else:
raise Exception

if x > 0:

N U W o

Toy example

if x > @:
return -x
else:
if y < 10:
return y
else:
raise Exception

N U W o

Toy example

if x > @:
return -x
else:
if y < 10:
return y
else:
raise Exception

return

if x >0

xy

-X

N U W o

Toy example

if x > @:
return -x
else:
if y < 10:
return y
else:
raise Exception

return

if x > 0:

xy

-X

\\‘\\\;zgf > 0)

N U W o

Toy example

if x > @:
return -x
else:
if y < 10:
return y
else:
raise Exception

return

if x > 0:

xy

-X

\\‘\\\;zgf > 0)

if y < 10:

N U W o

Toy example

if x > @:
return -x
else:
if y < 10:
return y
else:
raise Exception

return

if x > 0:

xy

-X

\\‘\\\;zgf > 0)

if y < 10

y<10/

.
.

N U W o

Toy example

if x > @:
return -x
else:
if y < 10:
return y
else:
raise Exception

return

if x >

leg////

-X

0

\\‘\\\;zgf > 0)

if y < 10

y<10/

return y

.
.

N U W o

Toy example

if x > @:
return -x
else:
if y < 10:
return y
else:
raise Exception

if x >

xy

return -x

0:
\(X>O)
if y < 10:
y<10/ \ﬁ(y<10)
return y

N U W o

Toy example

if x > @:
return -x
else:
if y < 10:
return y
else:
raise Exception

if x >

leg////

return -x

0:

\\‘\\\;zgf > 0)

if y < 10:

y < 10/ \ﬂ(y < 10)

return y raise Exception

» KLEE [CDEOS8]

» KLEE [CDEO08]
» Symbolic execution survey [Bal+18]

» KLEE [CDEO08]
» Symbolic execution survey [Bal+18]

» Concrete + symbolic = concolic execution [SMAO5; GKS05]

» KLEE [CDE08]
» Symbolic execution survey [Bal+18]

» Concrete + symbolic = concolic execution [SMAO5; GKS05]

» Constraint solvers are currently SMT solvers: Z3 [MB08], CVC5 [Bar+22],
Alt-Ergo [Con+18], SMT-LIB interface [BFT16]

Overview of Program Analysis Techniques

Fuzzing

» Black-box: generates new inputs either by

» Black-box: generates new inputs either by
e mutating input samples (mutational)

» Black-box: generates new inputs either by

e mutating input samples (mutational)
e relying on an input grammar (generational)

» Black-box: generates new inputs either by
e mutating input samples (mutational)
e relying on an input grammar (generational)

» Gray-box: rely on instrumented coverage to direct fuzzing (cf. AFL++,
LibFuzzer)

» Black-box: generates new inputs either by
e mutating input samples (mutational)

e relying on an input grammar (generational)
» Gray-box: rely on instrumented coverage to direct fuzzing (cf. AFL++,

LibFuzzer)
» White-box = symbolic execution

» Popular: easy to set basic version up

» Popular: easy to set basic version up

» Difficulty: correct instrumentation/directing of fuzzers

» Popular: easy to set basic version up

» Difficulty: correct instrumentation/directing of fuzzers

» May use lots of resources

» Popular: easy to set basic version up

» Difficulty: correct instrumentation/directing of fuzzers
» May use lots of resources
» Sanitizers can be added to detect more bugs

» Popular: easy to set basic version up

» Difficulty: correct instrumentation/directing of fuzzers
» May use lots of resources

» Sanitizers can be added to detect more bugs

» Google's OSS-FUZZ infrastructure

Overview of Program Analysis Techniques

Abstract Interpretation

» Approximate analysis, but ensure soundness and termination

10

» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.

10

» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.

10

» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.
o Alarms: deciding which ones are true

10

» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.

o Alarms: deciding which ones are true
e Usually cannot prove programs incorrect

10

» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.

o Alarms: deciding which ones are true
e Usually cannot prove programs incorrect

» Traditionally used for certification

10

» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.

o Alarms: deciding which ones are true
e Usually cannot prove programs incorrect

» Traditionally used for certification
o Airbus A380/A340 control commands with Astrée [Ber+10]

10

» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.

o Alarms: deciding which ones are true
e Usually cannot prove programs incorrect

» Traditionally used for certification

o Airbus A380/A340 control commands with Astrée [Ber+10]
o Nuclear power plants with Frama-C [BBY17]

10

» Approximate analysis, but ensure soundness and termination

» Invented by Patrick and Radhia Cousot in the late 70s.
» Analysis tries to prove program correct.

o Alarms: deciding which ones are true
e Usually cannot prove programs incorrect

» Traditionally used for certification

o Airbus A380/A340 control commands with Astrée [Ber+10]
o Nuclear power plants with Frama-C [BBY17]

» Suggested entry-point: Miné [Min17]

10

Core Ideas behind Abstract Interpretation

D (concrete)

1

D (concrete)

D! (abstract)

Interpret in non-standard domain
Program proved safe

1

Dt (abstract)
True alarm

D (concrete)

1

D (concrete)

D! (abstract)

1

D (concrete)

D! (abstract)

False alarm (Abstraction too coarse)

1

D (concrete)

D! (abstract)

Unsound analysis
(shouldn't happen)

1

int x = rand();

12

int x = rand();

» Concrete World

12

int x = rand();

» Concrete World
e Set of program states P(V — Z)

12

int x = rand();

» Concrete World

e Set of program states P(V — Z)
e Y={x—>n|0<n<2}

12

int x = rand();

» Concrete World

e Set of program states P(V — Z)
e Y={x—>n|0<n<2}

» Abstract World

12

int x = rand();

» Concrete World

e Set of program states P(V — Z)
e Y={x—>n|0<n<2}

» Abstract World
e Represent multiple concrete states at once V — Intervals

12

int x = rand();

» Concrete World
e Set of program states P(V — Z)
e Y={x—>n|0<n<2}

» Abstract World

e Represent multiple concrete states at once V — Intervals
o of = x> [0,2147483647]

12

int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

13

int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

» Contrary to symbolic execution, merge paths

13

int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

» Contrary to symbolic execution, merge paths
» Rely on least upper bound operator (L) and lattice structure

13

int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

» Contrary to symbolic execution, merge paths
» Rely on least upper bound operator (L) and lattice structure

A computing an over-approximation, potential imprecision

13

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

» Contrary to symbolic execution, merge paths
» Rely on least upper bound operator (L) and lattice structure

Precision tradeoffs
A computing an over-approximation, potential imprecision

» ConcreteX={x—n| —1<n<1MANn#10}

13

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

» Contrary to symbolic execution, merge paths
» Rely on least upper bound operator (L) and lattice structure

Precision tradeoffs
A computing an over-approximation, potential imprecision

» ConcreteX={x—n| —1<n<1MANn#10}
» Abstract of = x = [1,11]

13

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

» Contrary to symbolic execution, merge paths
» Rely on least upper bound operator (L) and lattice structure

Precision tradeoffs
A computing an over-approximation, potential imprecision

» ConcreteX={x—n| —1<n<1MANn#10}
» Abstract of = x = [1,11]

—> may require better abstractions!

13

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

» Contrary to symbolic execution, merge paths
» Rely on least upper bound operator (LI) and lattice structure

Precision tradeoffs
A computing an over-approximation, potential imprecision

» Concrete X ={x—n| —1<n<MMAn#10}
» Abstract of = x = [1,11]

—> may require better abstractions!

Merging can also be applied to arrays, ... 13

1 int i = @;

2 while(i < 100) {
3 i++;

4}

14

1 int i = 0;

2 while(i < 100) {
3 i++;
4

}

Iteration Values of i in loop

0 [0, 0]

1 [0, 1]
99 [0, 99]
100 [0,99]

14

1 int i = 0;

2 while(i < 100) {
3 i++;
4

}

Iteration Values of i in loop

0 [0, 0]

1 [0, 1]
99 [0, 99]
100 [0,99]

» Stabilization reached!

14

1 int i = @;
2 while(i < 100) {
3 i++;
4}

Iteration Values of i in loop

0 [0, 0]

1 [0, 1]
99 [0, 99]
100 [0,99]

» Stabilization reached!
© large nb(iterations)

14

Introduce generalization operator V

1 int i = @;
2 while(i < 100) {
3 i++;
4}

Iteration Values of i in loop

0 [0, 0]

1 [0, 1]
99 [0, 99]
100 [0,99]

» Stabilization reached!
© large nb(iterations)

14

Introduce generalization operator V

1 int i = o » Over-approximating least upper bound LI
2 while(i < 100) {
3 i++;
4}

Iteration Values of i in loop

0 [0, 0]

1 [0, 1]
99 [0, 99]
100 [0,99]

» Stabilization reached!
© large nb(iterations)

14

Introduce generalization operator V
» Over-approximating least upper bound LI
» Ensures finite termination of loop iterations

1 int i = @;
2 while(i < 100) {
3 i++;
4}

Iteration Values of i in loop

0 [0, 0]

1 [0, 1]
99 [0, 99]
100 [0,99]

» Stabilization reached!
© large nb(iterations)

14

Introduce generalization operator V
int i - 6; » Over-approximating least upper bound U
while(i < 100) {
» Ensures finite termination of loop iterations

.
2
3 i++;
4}
» nb(iterations) does not depend on loop bound

Iteration Values of i in loop

[0, 0]

1 [0, 1]
99 [0, 99]
100 [0,99]

» Stabilization reached!
© large nb(iterations)

14

Introduce generalization operator V
» Over-approximating least upper bound LI
» Ensures finite termination of loop iterations
» nb(iterations) does not depend on loop bound

1 int i = 0;

2 while(i < 100) {
3 i++;
4

}

Iteration Values of i in loop

Iteration Values of i in loop
[0, 0]
0 [0, 0]
1 0,1)
[0, 1] 1 [0, 1]
100 [0, 99] x

» Stabilization reached!
© large nb(iterations)

14

Introduce generalization operator V
» Over-approximating least upper bound LI
» Ensures finite termination of loop iterations
» nb(iterations) does not depend on loop bound

1 int i = 0;

2 while(i < 100) {
3 i++;
4

}

Iteration Values of i in loop

Iteration Values of i in loop
[0, 0]
0 [0, 0]
1 0,1 !
[0, 1] 1 0, 1]
99 [0, 99] i [0, 01 V[0, 1] = Eg +oo}
100 [0, 99] x

» Stabilization reached! . :
Precision can be recovered through decreasing

O large nb(iterations) terations
— i=0,99] 1

A Modern Abstract Interpreter: Mopsa

e Modular Open Platform for Static Analysis [Jou+19]

gitlab.com/mopsa/mopsa-analyzer

15

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis [Jou+19]

gitlab.com/mopsa/mopsa-analyzer

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis [Jou+19]

gitlab.com/mopsa/mopsa-analyzer

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis [Jou+19]

gitlab.com/mopsa/mopsa-analyzer

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis [Jou+19]

gitlab.com/mopsa/mopsa-analyzer

gitlab.com/mopsa/mopsa-analyzer

» A Miné

» A. Ouadjaout
» M. Journault
» A. Fromherz

» D. Delmas » M. Milanese
» R. Monat » M. Valnet
» G. Bau »). Boillot

» F. Parolini

16

» A. Miné

» A. Ouadjaout
» M. Journault
» A. Fromherz

Maintainers in bold.

» D. Delmas
» R. Monat
» G. Bau

» F. Parolini

» M. Milanese
» M. Valnet
» J. Boillot

16

» Tools have to

17

» Tools have to
« Decide whether a program is correct (large penalties if wrong)

17

» Tools have to
« Decide whether a program is correct (large penalties if wrong)
o Within limited machine resources (15 minutes CPU time, 8GB RAM)

17

» Tools have to
« Decide whether a program is correct (large penalties if wrong)
o Within limited machine resources (15 minutes CPU time, 8GB RAM)

» Corpus of ~ 23,000 C benchmarks, now acts as a reference

17

» Tools have to
« Decide whether a program is correct (large penalties if wrong)
o Within limited machine resources (15 minutes CPU time, 8GB RAM)

» Corpus of ~ 23,000 C benchmarks, now acts as a reference
» For our second participation, Mopsa won the “Software Systems” track!

17

» Tools have to
« Decide whether a program is correct (large penalties if wrong)

o Within limited machine resources (15 minutes CPU time, 8GB RAM)
» Corpus of ~ 23,000 C benchmarks, now acts as a reference
» For our second participation, Mopsa won the “Software Systems” track!

1000

2s —o
Bubazk —&—
Gubask-SpLit —p—
CBMC ——
OVT-ParPort ——
COABAMENE —H—
CRABAM-SMG —t—

17

18

https://github.com/caseman/noise
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/ilanschnell/bitarray

18

https://github.com/caseman/noise
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/ilanschnell/bitarray

Library C+Py Lloc Tests Oftest %‘W% # checks
noise 1397 15/15 1.2s 99.7% 6690
cdistance 2345 2828 4.1s 98.0% 13716
1list 4515 167/194 1.5s 98.8% 36255
ahocorasick 4877 4692 1.2s 96.7% 6722
levenshtein 5798 17/17 53s 84.6% 4825
bitarray 5841 159/216 1.6s 94.9% 25566

18

https://github.com/caseman/noise
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/ilanschnell/bitarray

» Llarge support of libc
through stubs

19

» Llarge support of libc
through stubs

» Check for all C runtime
errors

19

» Llarge support of libc
through stubs

» Check for all C runtime
errors

» Ability to analyze real-world
programs

19

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
dirname 21.68s 99.61% 11,307

» Large support of libc echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774

through stubs
—) pwd 22.04s 99.62% 11,502
» Check for all C runtime rmdir 39.00s 99.22% 11,699
errors sleep 23.79s 99.46% 11,546
» Ability to analyze real-world tee 3569s 98.76% 12,057
timeout 32.28s 98.51% 12,420

programs

true 9.55s 99.72% 10,774
uname 20.61s 99.52% 11,943
users 20.82s 99.06% 11,668
whoami 13.03s 99.66% 11,329

19

» Focus on bugs that a user can trigger through program interaction

20

» Focus on bugs that a user can trigger through program interaction
» Relies on combination of taint+value analysis

20

» Focus on bugs that a user can trigger through program interaction
» Relies on combination of taint+value analysis

Test suite Domain Analyzer Alarms Time
Coreutils Intervals MOPSA 4,715 1:17:06
MOPSA-NEXP 1,217 (-74.19%) 1:28:42 (+15.05%)
Octagons MOPSA 4,673 2:22:29
MOPSA-NEXP 1,209 (-74.13%) 2:43:06 (+14.47%)
Polyhedra MopPsa 4,651 2:12:21
MOPSA-NEXP 1,193 (-74.35%) 2:30:44 (+13.89%)
Juliet Intervals MOPSA 49,957 11:32:24
MOPSA-NEXP 13,906 (72.16%) 11:48:51 (+2.38%)
Octagons MOPSA 48,256 13:15:29
MOPSA-NEXP 13,631 (-71.75%) 13:41:47 (+3.31%)
Polyhedra MoPsA 48,256 12:54:21
MOPSA-NEXP 13,631 (71.75%) 13:21:26 (+3.50%)

20

» Scalability (compositional function analyses)

21

» Scalability (compositional function analyses)
» Usability

21

» Scalability (compositional function analyses)
» Usability
» Resource aware analyses, tailoring for best precision (ANR RAISIN)

21

» Scalability (compositional function analyses)
» Usability

» Resource aware analyses, tailoring for best precision (ANR RAISIN)
» Handling of false alarms (ongoing work by Marco Milanese [MM24])

21

» Scalability (compositional function analyses)
» Usability

» Resource aware analyses, tailoring for best precision (ANR RAISIN)
» Handling of false alarms (ongoing work by Marco Milanese [MM24])

» Maintenance and development effort

21

» Scalability (compositional function analyses)
» Usability

» Resource aware analyses, tailoring for best precision (ANR RAISIN)
» Handling of false alarms (ongoing work by Marco Milanese [MM24])

» Maintenance and development effort
» New languages, properties, specific programs

21

Conclusion

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.

HEY! GET BACK
TO WORK!

2.

Ela QPG>

5 W T
OH. CARRY ON.)" A

xkcd.com/303 2

xkcd.com/303

THE #1 PROGRAMMER EXCUSE

FOR LEGITIMATELY SLACKING OFF: Techniques
“MY CODE'S COMPILING. » Symbolic execution
HEY! GET BACK
TO WORK!

2.

]:I =

xkcd.com/303 2

xkcd.com/303

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

HEY! GET BACK
TO WORK!

2.

]:I =

xkcd.com/303

Techniques
» Symbolic execution

» Fuzzing

22

xkcd.com/303

THE #1 PROGRAMMER EXCUSE

FOR LEGITIMATELY SLACKING OFF: Techniques
“MY CODE'S COMPILING. » Symbolic execution
» Fuzzing
H%g%{gﬁm » Abstract interpretation
7

]:I =

xkcd.com/303 2

xkcd.com/303

THE #1 PROGRAMMER EXCUSE

FOR LEGITIMATELY SLACKING OFF: Techniques
“MY CODE'S COMPILING. » Symbolic execution
. » Fuzzing

HEY! GET BACK » Abstract interpretation
TO WORK!

7%
Requirements

]:I =

xkcd.com/303 2

xkcd.com/303

THE #1 PROGRAMMER EXCUSE .
FOR LEGITIMATELY SLACKING OFF: Techniques

“MY CODE'S CDNPILING“ » Symbolic execution

» Fuzzing

HEY! GET BACK » Abstract interpretation
TO WORK!

7
Requirements

» Property to verify

]:I =

xkcd.com/303 22

xkcd.com/303

THE #1 PROGRAMMER EXCUSE .
FOR LEGITIMATELY SLACKING OFF: Techniques

“MY CODE'S CONPILING“ » Symbolic execution

» Fuzzing
HEY! GET BACK
TO WORK!

» Abstract interpretation

Requirements
» Property to verify

» Semantics of language

xkcd.com/303 22

xkcd.com/303

THE #1 PROGRAMMER EXCUSE .
FOR LEGITIMATELY SLACKING OFF: Techniques

“MY CODE'S CONPILING“ » Symbolic execution

» Fuzzing
HEY! GET BACK
TO WORK!

» Abstract interpretation

Requirements
» Property to verify

» Semantics of language
» Benchmarks; usecases

xkcd.com/303 22

xkcd.com/303

[Bal+18]

[Bal+19]

[Bar+22]

[BBY17]

Roberto Baldoni et al. “A Survey of Symbolic Execution Techniques”. In:
ACM Comput. Surv. 3 (2018), 50:1-50:39.

Clement Ballabriga et al. “Static Analysis of Binary Code with Memory
Indirections Using Polyhedra”. 1 Lecture Notes in Computer Science.
Springer, 2019, pp. 114-135.

Haniel Barbosa et al. “cvc5: A Versatile and Industrial-Strength SMT
Solver”. In: Lecture Notes in Computer Science. Springer, 2022, pp. &415-442.

S. Blazy, D. Buhler, and B. Yakobowski. “Structuring Abstract
Interpreters Through State and Value Abstractions”. in: [NCS Springer,
2017, pp. 112-130.

[Ber+10]

[BFT16]

[CDE08]

[Con+18]

|. Bertrane et al. “Static analysis and verification of aerospace
software by abstract interpretation”. 1 AlAA-2010-3385 20710,

Clark Barrett, Pascal Fontaine, and Cesare Tinelli.
The Satisfiability Modulo Theories Library (SMT-LIB).
www . SMT-LIB.org. 2016.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: unassisted
and automatic generation of high-coverage tests for complex systems
programs”. [n: 2005,

Sylvain Conchon et al. “Alt-Ergo 2.2". In: Oxford, United Kingdom, July 2018.

[DOM21] David Delmas, Abdelraouf Ouadjaout, and Antoine Miné. “Static
Analysis of Endian Portability by Abstract Interpretation”. n: lecture
Notes in Computer Science. Springer, 2021, pp. 102-123.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: directed
automated random testing”. [ACM, 2005, pp. 213273,

[Jou+19] M. Journault et al. “Combinations of reusable abstract domains for a
multilingual static analyzer”. [n: New York, USA Tuly 2019, pp. 1-17,

[MB08] Leonardo de Moura and Nikolaj Bjgrner. “Z3: An efficient SMT solver”.
In: 2008.

[Min17]

[MM24]

[MOM21]

Antoine Mine. “Tutorial on Static Inference of Numeric Invariants by
Abstract Interpretation”. In: found. Trends Program. Lang 3-4 (2017),
pp. 120-372.

Marco Milanese and Antoine Mine. “Generation of Violation Witnesses
by Under-Approximating Abstract Interpretation”. In: Lecture Notes in
Computer Science. Springer, 2024, pp. 50-73.

R. Monat, A. Ouadjaout, and A. Miné. “A Multilanguage Static Analysis
of Python Programs with Native C Extensions”. [2021

[Mon+24]

[OM20]

[PM24]

Raphael Monat et al. “Mopsa-C: Improved Verification for C Programs,
Simple Validation of Correctness Witnesses (Competition
Contribution)”. In: Lecture Notes in Computer Science. Springer, 2024,

pp. 387-392.

A. Ouadjaout and A. Minée. “A Library Modeling Language for the Static
Analysis of C Programs”. 1 ed. by David Pichardie and Mihaela Sighireanu.
Lecture Notes in Computer Science. Springer, 2020, pp. 223-247. DOI:
10.1007/978-3-030-65474-0_11.

Francesco Parolini and Antoine Mine. “Sound Abstract
Nonexploitability Analysis”. [Lecture Notes in Computer Science.
Springer, 2024, pp. 314-337.

https://doi.org/10.1007/978-3-030-65474-0_11

[SMAO5] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: a concolic unit
testing engine for C”. 1n: ACM, 2005, pp. 263-272. D01
10.1145/1081706.1081750.

https://doi.org/10.1145/1081706.1081750

	Introduction
	

	Overview of Program Analysis Techniques
	Symbolic Execution
	Fuzzing
	Abstract Interpretation

	Core Ideas behind Abstract Interpretation
	

	A Modern Abstract Interpreter: Mopsa
	

	Conclusion
	

	Appendix
	References

