
AnOverviewof Automated ProgramAnalysis

Raphaël Monat – SyCoMoRES team

rmonat.fr

CRIStAL’s CyberSecurity Seminar
21 Oct. 2024

rmonat.fr

Introduction

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations
Automated Verification of Catala Programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations
Automated Verification of Catala Programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms

I Formal methods for public administrations
Automated Verification of Catala Programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations
Automated Verification of Catala Programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations
Automated Verification of Catala Programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations
Automated Verification of Catala Programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems

I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations
Automated Verification of Catala Programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)

I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations
Automated Verification of Catala Programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

Automated Program Analysis

Target program

Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!

2

Automated Program Analysis

Target program Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!

2

Automated Program Analysis

Target program Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!

2

Automated Program Analysis

Target program Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!

2

Automated Program Analysis

Target program Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!

2

Automated Program Analysis

Target program Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)

3

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors

I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)

3

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution

I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)

3

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)

3

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)

3

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source

I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)

3

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)

3

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)

3

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code

I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)

3

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)

3

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)

3

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ now build Analyzerϕ(prog : i)
3

Turing & Rice to the Rescue (or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Sound

4

Turing & Rice to the Rescue (or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

SoundComplete

4

Turing & Rice to the Rescue (or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

4

Turing & Rice to the Rescue (or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

4

Turing & Rice to the Rescue (or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

∅
Rice’s theorem

4

Outline

1 Introduction

2 Overview of Program Analysis Techniques

Symbolic Execution

Fuzzing

Abstract Interpretation

3 Core Ideas behind Abstract Interpretation

4 A Modern Abstract Interpreter: Mopsa

5 Conclusion

5

Overview of Program Analysis Techniques

Symbolic Execution

Symbolic Execution

Core idea: systematic generation of testcases

Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints

I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution

Core idea: systematic generation of testcases
Explore all program paths

I Collect path constraints
I Rely on constraint solvers to generate testcases

Toy example

1 if x > 0:
2 return -x
3 else:
4 if y < 10:
5 return y
6 else:
7 raise Exception

if x > 0:

return -x

x > 0

if y < 10:

return y

y < 10

raise Exception

¬(y < 10)

¬(x > 0)

6

Symbolic Execution (II)

Risk: combinatorial explosion (loops, . . .)

Further references

I KLEE [CDE08]
I Symbolic execution survey [Bal+18]
I Concrete + symbolic = concolic execution [SMA05; GKS05]
I Constraint solvers are currently SMT solvers: Z3 [MB08], CVC5 [Bar+22],
Alt-Ergo [Con+18], SMT-LIB interface [BFT16]

7

Symbolic Execution (II)

Risk: combinatorial explosion (loops, . . .)

Further references

I KLEE [CDE08]

I Symbolic execution survey [Bal+18]
I Concrete + symbolic = concolic execution [SMA05; GKS05]
I Constraint solvers are currently SMT solvers: Z3 [MB08], CVC5 [Bar+22],
Alt-Ergo [Con+18], SMT-LIB interface [BFT16]

7

Symbolic Execution (II)

Risk: combinatorial explosion (loops, . . .)

Further references

I KLEE [CDE08]
I Symbolic execution survey [Bal+18]

I Concrete + symbolic = concolic execution [SMA05; GKS05]
I Constraint solvers are currently SMT solvers: Z3 [MB08], CVC5 [Bar+22],
Alt-Ergo [Con+18], SMT-LIB interface [BFT16]

7

Symbolic Execution (II)

Risk: combinatorial explosion (loops, . . .)

Further references

I KLEE [CDE08]
I Symbolic execution survey [Bal+18]
I Concrete + symbolic = concolic execution [SMA05; GKS05]

I Constraint solvers are currently SMT solvers: Z3 [MB08], CVC5 [Bar+22],
Alt-Ergo [Con+18], SMT-LIB interface [BFT16]

7

Symbolic Execution (II)

Risk: combinatorial explosion (loops, . . .)

Further references

I KLEE [CDE08]
I Symbolic execution survey [Bal+18]
I Concrete + symbolic = concolic execution [SMA05; GKS05]
I Constraint solvers are currently SMT solvers: Z3 [MB08], CVC5 [Bar+22],
Alt-Ergo [Con+18], SMT-LIB interface [BFT16]

7

Overview of Program Analysis Techniques

Fuzzing

Fuzzing

Core idea: throw random stuff at programs
cat /dev/random | ./target-program

Crash (segmentation fault, . . .) =⇒ you may be on to something!

Various shades of fuzzing

I Black-box: generates new inputs either by

• mutating input samples (mutational)
• relying on an input grammar (generational)

I Gray-box: rely on instrumented coverage to direct fuzzing (cf. AFL++,
LibFuzzer)

I White-box = symbolic execution

8

Fuzzing

Core idea: throw random stuff at programs
cat /dev/random | ./target-program

Crash (segmentation fault, . . .) =⇒ you may be on to something!

Various shades of fuzzing

I Black-box: generates new inputs either by

• mutating input samples (mutational)
• relying on an input grammar (generational)

I Gray-box: rely on instrumented coverage to direct fuzzing (cf. AFL++,
LibFuzzer)

I White-box = symbolic execution

8

Fuzzing

Core idea: throw random stuff at programs
cat /dev/random | ./target-program

Crash (segmentation fault, . . .) =⇒ you may be on to something!

Various shades of fuzzing

I Black-box: generates new inputs either by

• mutating input samples (mutational)
• relying on an input grammar (generational)

I Gray-box: rely on instrumented coverage to direct fuzzing (cf. AFL++,
LibFuzzer)

I White-box = symbolic execution

8

Fuzzing

Core idea: throw random stuff at programs
cat /dev/random | ./target-program

Crash (segmentation fault, . . .) =⇒ you may be on to something!

Various shades of fuzzing

I Black-box: generates new inputs either by

• mutating input samples (mutational)
• relying on an input grammar (generational)

I Gray-box: rely on instrumented coverage to direct fuzzing (cf. AFL++,
LibFuzzer)

I White-box = symbolic execution

8

Fuzzing

Core idea: throw random stuff at programs
cat /dev/random | ./target-program

Crash (segmentation fault, . . .) =⇒ you may be on to something!

Various shades of fuzzing

I Black-box: generates new inputs either by
• mutating input samples (mutational)

• relying on an input grammar (generational)

I Gray-box: rely on instrumented coverage to direct fuzzing (cf. AFL++,
LibFuzzer)

I White-box = symbolic execution

8

Fuzzing

Core idea: throw random stuff at programs
cat /dev/random | ./target-program

Crash (segmentation fault, . . .) =⇒ you may be on to something!

Various shades of fuzzing

I Black-box: generates new inputs either by
• mutating input samples (mutational)
• relying on an input grammar (generational)

I Gray-box: rely on instrumented coverage to direct fuzzing (cf. AFL++,
LibFuzzer)

I White-box = symbolic execution

8

Fuzzing

Core idea: throw random stuff at programs
cat /dev/random | ./target-program

Crash (segmentation fault, . . .) =⇒ you may be on to something!

Various shades of fuzzing

I Black-box: generates new inputs either by
• mutating input samples (mutational)
• relying on an input grammar (generational)

I Gray-box: rely on instrumented coverage to direct fuzzing (cf. AFL++,
LibFuzzer)

I White-box = symbolic execution

8

Fuzzing

Core idea: throw random stuff at programs
cat /dev/random | ./target-program

Crash (segmentation fault, . . .) =⇒ you may be on to something!

Various shades of fuzzing

I Black-box: generates new inputs either by
• mutating input samples (mutational)
• relying on an input grammar (generational)

I Gray-box: rely on instrumented coverage to direct fuzzing (cf. AFL++,
LibFuzzer)

I White-box = symbolic execution

8

Fuzzing (II)

Current state

I Popular: easy to set basic version up

I Difficulty: correct instrumentation/directing of fuzzers
I May use lots of resources
I Sanitizers can be added to detect more bugs
I Google’s OSS-FUZZ infrastructure

9

Fuzzing (II)

Current state

I Popular: easy to set basic version up
I Difficulty: correct instrumentation/directing of fuzzers

I May use lots of resources
I Sanitizers can be added to detect more bugs
I Google’s OSS-FUZZ infrastructure

9

Fuzzing (II)

Current state

I Popular: easy to set basic version up
I Difficulty: correct instrumentation/directing of fuzzers
I May use lots of resources

I Sanitizers can be added to detect more bugs
I Google’s OSS-FUZZ infrastructure

9

Fuzzing (II)

Current state

I Popular: easy to set basic version up
I Difficulty: correct instrumentation/directing of fuzzers
I May use lots of resources
I Sanitizers can be added to detect more bugs

I Google’s OSS-FUZZ infrastructure

9

Fuzzing (II)

Current state

I Popular: easy to set basic version up
I Difficulty: correct instrumentation/directing of fuzzers
I May use lots of resources
I Sanitizers can be added to detect more bugs
I Google’s OSS-FUZZ infrastructure

9

Overview of Program Analysis Techniques

Abstract Interpretation

Abstract Interpretation

I Approximate analysis, but ensure soundness and termination

I Invented by Patrick and Radhia Cousot in the late 70s.
I Analysis tries to prove program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

10

Abstract Interpretation

I Approximate analysis, but ensure soundness and termination
I Invented by Patrick and Radhia Cousot in the late 70s.

I Analysis tries to prove program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

10

Abstract Interpretation

I Approximate analysis, but ensure soundness and termination
I Invented by Patrick and Radhia Cousot in the late 70s.
I Analysis tries to prove program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

10

Abstract Interpretation

I Approximate analysis, but ensure soundness and termination
I Invented by Patrick and Radhia Cousot in the late 70s.
I Analysis tries to prove program correct.

• Alarms: deciding which ones are true

• Usually cannot prove programs incorrect
I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

10

Abstract Interpretation

I Approximate analysis, but ensure soundness and termination
I Invented by Patrick and Radhia Cousot in the late 70s.
I Analysis tries to prove program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

10

Abstract Interpretation

I Approximate analysis, but ensure soundness and termination
I Invented by Patrick and Radhia Cousot in the late 70s.
I Analysis tries to prove program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

10

Abstract Interpretation

I Approximate analysis, but ensure soundness and termination
I Invented by Patrick and Radhia Cousot in the late 70s.
I Analysis tries to prove program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification
• Airbus A380/A340 control commands with Astrée [Ber+10]

• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

10

Abstract Interpretation

I Approximate analysis, but ensure soundness and termination
I Invented by Patrick and Radhia Cousot in the late 70s.
I Analysis tries to prove program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification
• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

10

Abstract Interpretation

I Approximate analysis, but ensure soundness and termination
I Invented by Patrick and Radhia Cousot in the late 70s.
I Analysis tries to prove program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification
• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

10

Core Ideas behind Abstract Interpretation

Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

D] (abstract)

γ

11

Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

Bad states

D] (abstract)

γ

Interpret in non-standard domain
Program proved safe

11

Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

Bad states

D] (abstract)

γ

True alarm

11

Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

Bad states

D] (abstract)

γ

11

Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

Bad states

D] (abstract)

γ

False alarm (Abstraction too coarse)

11

Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

Bad states

D] (abstract)

γ

Unsound analysis
(shouldn’t happen)

11

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World

• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World

• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]

12

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World

• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World

• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]

12

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World
• Set of program states P(V → Z)

• Σ = { x 7→ n | 0 ≤ n < 231 }
I Abstract World

• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]

12

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World
• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World

• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]

12

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World
• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World

• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]

12

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World
• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World
• Represent multiple concrete states at once V → Intervals

• σ] = x 7→ [0, 2147483647]

12

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World
• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World
• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]

12

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

13

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths

I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

13

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

13

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

13

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }

I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

13

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

13

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

13

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . . 13

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇

I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

14

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇

I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

14

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!

Exclamation-circle large nb(iterations)

Introduce generalization operator ∇

I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

14

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇

I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

14

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇

I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

14

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇
I Over-approximating least upper bound t

I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

14

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇
I Over-approximating least upper bound t
I Ensures finite termination of loop iterations

I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

14

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇
I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

14

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇
I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

14

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇
I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99] 14

A Modern Abstract Interpreter: Mopsa

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

15

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

15

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

15

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)

I Can be used as an experimentation platform

15

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

15

gitlab.com/mopsa/mopsa-analyzer

Contributors (2018–2024, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.

16

Contributors (2018–2024, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.

16

Software-Verification Competition – Monat et al. [Mon+24]

I Tools have to

• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

17

Software-Verification Competition – Monat et al. [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)

• Within limited machine resources (15 minutes CPU time, 8GB RAM)
I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

17

Software-Verification Competition – Monat et al. [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

17

Software-Verification Competition – Monat et al. [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference

I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

17

Software-Verification Competition – Monat et al. [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

17

Software-Verification Competition – Monat et al. [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score 17

Multilanguage Analysis – Monat, Ouadjaout, and Miné [MOM21]

Assessment 20% of the 200 most popular Python libraries rely on C code

Dangers: different values (Z vs. Int32); shared memory state

Our approach: Combined analysis of C, Python and interface code

Library C + Py. Loc Tests CLOCK/test # proved checks
checks % # checks

noise 1397 15/15 1.2s 99.7% 6690
cdistance 2345 28/28 4.1s 98.0% 13716
llist 4515 167/194 1.5s 98.8% 36255
ahocorasick 4877 46/92 1.2s 96.7% 6722
levenshtein 5798 17/17 5.3s 84.6% 4825
bitarray 5841 159/216 1.6s 94.9% 25566

18

https://github.com/caseman/noise
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/ilanschnell/bitarray

Multilanguage Analysis – Monat, Ouadjaout, and Miné [MOM21]

Assessment 20% of the 200 most popular Python libraries rely on C code

Dangers: different values (Z vs. Int32); shared memory state

Our approach: Combined analysis of C, Python and interface code

Library C + Py. Loc Tests CLOCK/test # proved checks
checks % # checks

noise 1397 15/15 1.2s 99.7% 6690
cdistance 2345 28/28 4.1s 98.0% 13716
llist 4515 167/194 1.5s 98.8% 36255
ahocorasick 4877 46/92 1.2s 96.7% 6722
levenshtein 5798 17/17 5.3s 84.6% 4825
bitarray 5841 159/216 1.6s 94.9% 25566

18

https://github.com/caseman/noise
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/ilanschnell/bitarray

Multilanguage Analysis – Monat, Ouadjaout, and Miné [MOM21]

Assessment 20% of the 200 most popular Python libraries rely on C code

Dangers: different values (Z vs. Int32); shared memory state

Our approach: Combined analysis of C, Python and interface code

Library C + Py. Loc Tests CLOCK/test # proved checks
checks % # checks

noise 1397 15/15 1.2s 99.7% 6690
cdistance 2345 28/28 4.1s 98.0% 13716
llist 4515 167/194 1.5s 98.8% 36255
ahocorasick 4877 46/92 1.2s 96.7% 6722
levenshtein 5798 17/17 5.3s 84.6% 4825
bitarray 5841 159/216 1.6s 94.9% 25566

18

https://github.com/caseman/noise
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/ilanschnell/bitarray

Coreutils – Ouadjaout and Miné [OM20]

I Large support of libc
through stubs

I Check for all C runtime
errors

I Ability to analyze real-world
programs

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
dirname 21.68s 99.61% 11,307
echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774
pwd 22.04s 99.62% 11,502
rmdir 39.00s 99.22% 11,699
sleep 23.79s 99.46% 11,546
tee 35.69s 98.76% 12,057
timeout 32.28s 98.51% 12,420
true 9.55s 99.72% 10,774
uname 20.61s 99.52% 11,943
users 20.82s 99.06% 11,668
whoami 13.03s 99.66% 11,329

19

Coreutils – Ouadjaout and Miné [OM20]

I Large support of libc
through stubs

I Check for all C runtime
errors

I Ability to analyze real-world
programs

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
dirname 21.68s 99.61% 11,307
echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774
pwd 22.04s 99.62% 11,502
rmdir 39.00s 99.22% 11,699
sleep 23.79s 99.46% 11,546
tee 35.69s 98.76% 12,057
timeout 32.28s 98.51% 12,420
true 9.55s 99.72% 10,774
uname 20.61s 99.52% 11,943
users 20.82s 99.06% 11,668
whoami 13.03s 99.66% 11,329

19

Coreutils – Ouadjaout and Miné [OM20]

I Large support of libc
through stubs

I Check for all C runtime
errors

I Ability to analyze real-world
programs

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
dirname 21.68s 99.61% 11,307
echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774
pwd 22.04s 99.62% 11,502
rmdir 39.00s 99.22% 11,699
sleep 23.79s 99.46% 11,546
tee 35.69s 98.76% 12,057
timeout 32.28s 98.51% 12,420
true 9.55s 99.72% 10,774
uname 20.61s 99.52% 11,943
users 20.82s 99.06% 11,668
whoami 13.03s 99.66% 11,329

19

Coreutils – Ouadjaout and Miné [OM20]

I Large support of libc
through stubs

I Check for all C runtime
errors

I Ability to analyze real-world
programs

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
dirname 21.68s 99.61% 11,307
echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774
pwd 22.04s 99.62% 11,502
rmdir 39.00s 99.22% 11,699
sleep 23.79s 99.46% 11,546
tee 35.69s 98.76% 12,057
timeout 32.28s 98.51% 12,420
true 9.55s 99.72% 10,774
uname 20.61s 99.52% 11,943
users 20.82s 99.06% 11,668
whoami 13.03s 99.66% 11,329

19

Non-exploitability – Parolini and Miné [PM24]

I Focus on bugs that a user can trigger through program interaction

I Relies on combination of taint+value analysis

20

Non-exploitability – Parolini and Miné [PM24]

I Focus on bugs that a user can trigger through program interaction
I Relies on combination of taint+value analysis

20

Non-exploitability – Parolini and Miné [PM24]

I Focus on bugs that a user can trigger through program interaction
I Relies on combination of taint+value analysis

20

Future Work Around Mopsa

I Scalability (compositional function analyses)

I Usability

• Resource aware analyses, tailoring for best precision (ANR RAISIN)
• Handling of false alarms (ongoing work by Marco Milanese [MM24])

I Maintenance and development effort
I New languages, properties, specific programs

21

Future Work Around Mopsa

I Scalability (compositional function analyses)
I Usability

• Resource aware analyses, tailoring for best precision (ANR RAISIN)
• Handling of false alarms (ongoing work by Marco Milanese [MM24])

I Maintenance and development effort
I New languages, properties, specific programs

21

Future Work Around Mopsa

I Scalability (compositional function analyses)
I Usability

• Resource aware analyses, tailoring for best precision (ANR RAISIN)

• Handling of false alarms (ongoing work by Marco Milanese [MM24])

I Maintenance and development effort
I New languages, properties, specific programs

21

Future Work Around Mopsa

I Scalability (compositional function analyses)
I Usability

• Resource aware analyses, tailoring for best precision (ANR RAISIN)
• Handling of false alarms (ongoing work by Marco Milanese [MM24])

I Maintenance and development effort
I New languages, properties, specific programs

21

Future Work Around Mopsa

I Scalability (compositional function analyses)
I Usability

• Resource aware analyses, tailoring for best precision (ANR RAISIN)
• Handling of false alarms (ongoing work by Marco Milanese [MM24])

I Maintenance and development effort

I New languages, properties, specific programs

21

Future Work Around Mopsa

I Scalability (compositional function analyses)
I Usability

• Resource aware analyses, tailoring for best precision (ANR RAISIN)
• Handling of false alarms (ongoing work by Marco Milanese [MM24])

I Maintenance and development effort
I New languages, properties, specific programs

21

Conclusion

Conclusion

xkcd.com/303

Techniques

I Symbolic execution
I Fuzzing
I Abstract interpretation

Requirements

I Property to verify
I Semantics of language
I Benchmarks; usecases

22

xkcd.com/303

Conclusion

xkcd.com/303

Techniques
I Symbolic execution

I Fuzzing
I Abstract interpretation

Requirements

I Property to verify
I Semantics of language
I Benchmarks; usecases

22

xkcd.com/303

Conclusion

xkcd.com/303

Techniques
I Symbolic execution
I Fuzzing

I Abstract interpretation

Requirements

I Property to verify
I Semantics of language
I Benchmarks; usecases

22

xkcd.com/303

Conclusion

xkcd.com/303

Techniques
I Symbolic execution
I Fuzzing
I Abstract interpretation

Requirements

I Property to verify
I Semantics of language
I Benchmarks; usecases

22

xkcd.com/303

Conclusion

xkcd.com/303

Techniques
I Symbolic execution
I Fuzzing
I Abstract interpretation

Requirements

I Property to verify
I Semantics of language
I Benchmarks; usecases

22

xkcd.com/303

Conclusion

xkcd.com/303

Techniques
I Symbolic execution
I Fuzzing
I Abstract interpretation

Requirements
I Property to verify

I Semantics of language
I Benchmarks; usecases

22

xkcd.com/303

Conclusion

xkcd.com/303

Techniques
I Symbolic execution
I Fuzzing
I Abstract interpretation

Requirements
I Property to verify
I Semantics of language

I Benchmarks; usecases

22

xkcd.com/303

Conclusion

xkcd.com/303

Techniques
I Symbolic execution
I Fuzzing
I Abstract interpretation

Requirements
I Property to verify
I Semantics of language
I Benchmarks; usecases

22

xkcd.com/303

References – I

[Bal+18] Roberto Baldoni et al. “A Survey of Symbolic Execution Techniques”. In:
ACM Comput. Surv. 3 (2018), 50:1–50:39.

[Bal+19] Clément Ballabriga et al. “Static Analysis of Binary Code with Memory
Indirections Using Polyhedra”. In: Lecture Notes in Computer Science.
Springer, 2019, pp. 114–135.

[Bar+22] Haniel Barbosa et al. “cvc5: A Versatile and Industrial-Strength SMT
Solver”. In: Lecture Notes in Computer Science. Springer, 2022, pp. 415–442.

[BBY17] S. Blazy, D. Bühler, and B. Yakobowski. “Structuring Abstract
Interpreters Through State and Value Abstractions”. In: LNCS. Springer,
2017, pp. 112–130.

References – II

[Ber+10] J. Bertrane et al. “Static analysis and verification of aerospace
software by abstract interpretation”. In: AIAA-2010-3385. 2010.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli.
The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org. 2016.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: unassisted
and automatic generation of high-coverage tests for complex systems
programs”. In: 2008.

[Con+18] Sylvain Conchon et al. “Alt-Ergo 2.2”. In: Oxford, United Kingdom, July 2018.

References – III

[DOM21] David Delmas, Abdelraouf Ouadjaout, and Antoine Miné. “Static
Analysis of Endian Portability by Abstract Interpretation”. In: Lecture
Notes in Computer Science. Springer, 2021, pp. 102–123.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: directed
automated random testing”. In: ACM, 2005, pp. 213–223.

[Jou+19] M. Journault et al. “Combinations of reusable abstract domains for a
multilingual static analyzer”. In: New York, USA, July 2019, pp. 1–17.

[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”.
In: 2008.

References – IV

[Min17] Antoine Miné. “Tutorial on Static Inference of Numeric Invariants by
Abstract Interpretation”. In: Found. Trends Program. Lang. 3-4 (2017),
pp. 120–372.

[MM24] Marco Milanese and Antoine Miné. “Generation of Violation Witnesses
by Under-Approximating Abstract Interpretation”. In: Lecture Notes in
Computer Science. Springer, 2024, pp. 50–73.

[MOM21] R. Monat, A. Ouadjaout, and A. Miné. “A Multilanguage Static Analysis
of Python Programs with Native C Extensions”. In: 2021.

References – V

[Mon+24] Raphaël Monat et al. “Mopsa-C: Improved Verification for C Programs,
Simple Validation of Correctness Witnesses (Competition
Contribution)”. In: Lecture Notes in Computer Science. Springer, 2024,
pp. 387–392.

[OM20] A. Ouadjaout and A. Miné. “A Library Modeling Language for the Static
Analysis of C Programs”. In: ed. by David Pichardie and Mihaela Sighireanu.
Lecture Notes in Computer Science. Springer, 2020, pp. 223–247. doi:
10.1007/978-3-030-65474-0_11.

[PM24] Francesco Parolini and Antoine Miné. “Sound Abstract
Nonexploitability Analysis”. In: Lecture Notes in Computer Science.
Springer, 2024, pp. 314–337.

https://doi.org/10.1007/978-3-030-65474-0_11

References – VI

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: a concolic unit
testing engine for C”. In: ACM, 2005, pp. 263–272. doi:
10.1145/1081706.1081750.

https://doi.org/10.1145/1081706.1081750

	Introduction
	

	Overview of Program Analysis Techniques
	Symbolic Execution
	Fuzzing
	Abstract Interpretation

	Core Ideas behind Abstract Interpretation
	

	A Modern Abstract Interpreter: Mopsa
	

	Conclusion
	

	Appendix
	References

