
The Mopsa static analysis platform, and
our quest to ease implementation &maintenance

Raphaël Monat – SyCoMoRES team, Lille

rmonat.fr

Prosecco
10 March 2025

rmonat.fr

Introduction

Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up

Target program Program analyzer

3

7

?

1

Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up

Target program

Program analyzer

3

7

?

1

Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up

Target program Program analyzer

3

7

?

1

Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up

Target program Program analyzer

3

7

?

1

Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up

Target program Program analyzer

3

7

?

1

Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up

Target program Program analyzer

3

7

?

1

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i) evaluate it on benchmarks

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors

I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i) evaluate it on benchmarks

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution

I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i) evaluate it on benchmarks

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i) evaluate it on benchmarks

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i) evaluate it on benchmarks

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source

I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i) evaluate it on benchmarks

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i) evaluate it on benchmarks

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i) evaluate it on benchmarks

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code

I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i) evaluate it on benchmarks

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i) evaluate it on benchmarks

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i) evaluate it on benchmarks

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i)

evaluate it on benchmarks

2

A Program Analysis Recipe

Target property ϕ

I Absence of runtime errors
I Constant-time execution
I Endianness portability [DOM21]

Benchmarks

I Open-source
I Real-world

Input format i

I Source code
I Binary executable

Requirement: semantics of the program representation

=⇒ build Analyzerϕ(prog : i) evaluate it on benchmarks
2

Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Sound

3

Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

SoundComplete

3

Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

3

Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

3

Turing & Rice to the Rescue (or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

∅
Rice’s theorem

3

Turing & Rice to the Rescue (or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

Abstract
Interpretation

∅
Rice’s theorem

3

Community Goals

Academic research around static analysis

Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

4

Community Goals

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

4

Community Goals

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable

I Eases research:
• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

4

Community Goals

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

4

Community Goals

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

4

Community Goals

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming

I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

4

Community Goals

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

4

Community Goals

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

4

Outline

1 An AI primer

2 An overview of Mopsa

3 Easing maintenance and implementation

5

Abstract Interpretation

I Approximate analysis, ensuring soundness and termination

I Invented by Radhia and Patrick Cousot in the late 70s.
I Analysis tries to prove a program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

6

Abstract Interpretation

I Approximate analysis, ensuring soundness and termination
I Invented by Radhia and Patrick Cousot in the late 70s.

I Analysis tries to prove a program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

6

Abstract Interpretation

I Approximate analysis, ensuring soundness and termination
I Invented by Radhia and Patrick Cousot in the late 70s.
I Analysis tries to prove a program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

6

Abstract Interpretation

I Approximate analysis, ensuring soundness and termination
I Invented by Radhia and Patrick Cousot in the late 70s.
I Analysis tries to prove a program correct.

• Alarms: deciding which ones are true

• Usually cannot prove programs incorrect
I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

6

Abstract Interpretation

I Approximate analysis, ensuring soundness and termination
I Invented by Radhia and Patrick Cousot in the late 70s.
I Analysis tries to prove a program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

6

Abstract Interpretation

I Approximate analysis, ensuring soundness and termination
I Invented by Radhia and Patrick Cousot in the late 70s.
I Analysis tries to prove a program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification

• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

6

Abstract Interpretation

I Approximate analysis, ensuring soundness and termination
I Invented by Radhia and Patrick Cousot in the late 70s.
I Analysis tries to prove a program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification
• Airbus A380/A340 control commands with Astrée [Ber+10]

• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

6

Abstract Interpretation

I Approximate analysis, ensuring soundness and termination
I Invented by Radhia and Patrick Cousot in the late 70s.
I Analysis tries to prove a program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification
• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

6

Abstract Interpretation

I Approximate analysis, ensuring soundness and termination
I Invented by Radhia and Patrick Cousot in the late 70s.
I Analysis tries to prove a program correct.

• Alarms: deciding which ones are true
• Usually cannot prove programs incorrect

I Traditionally used for certification
• Airbus A380/A340 control commands with Astrée [Ber+10]
• Nuclear power plants with Frama-C [BBY17]

I Suggested entry-point: Miné [Min17]

6

Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

D] (abstract)

γ

7

Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

Bad states

D] (abstract)

γ

Interpret in non-standard domain
Program proved safe

7

Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

Bad states

D] (abstract)

γ

True alarm

7

Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

Bad states

D] (abstract)

γ

7

Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

Bad states

D] (abstract)

γ

False alarm (Abstraction too coarse)

7

Approximating a Complex World, with Guarantees

SJprog K

Bad states

D (concrete)

S]Jprog K

Bad states

D] (abstract)

γ

Unsound analysis
(shouldn’t happen)

7

An AI primer

Key Ingredients

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World

• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World

• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]

8

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World

• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World

• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]

8

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World
• Set of program states P(V → Z)

• Σ = { x 7→ n | 0 ≤ n < 231 }
I Abstract World

• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]

8

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World
• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World

• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]

8

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World
• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World

• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]

8

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World
• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World
• Represent multiple concrete states at once V → Intervals

• σ] = x 7→ [0, 2147483647]

8

Merging Everything to Scale

Merging States
int x = rand();

I Concrete World
• Set of program states P(V → Z)
• Σ = { x 7→ n | 0 ≤ n < 231 }

I Abstract World
• Represent multiple concrete states at once V → Intervals
• σ] = x 7→ [0, 2147483647]

8

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

9

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths

I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

9

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

9

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

9

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }

I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

9

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

9

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . .

9

Merging Everything to Scale (II)

Merging Paths
int x = rand(); if(x > 10) { x = 11; } else { x--; }; print(x);

I Contrary to symbolic execution, merge paths
I Rely on least upper bound operator (t) and lattice structure

Precision tradeoffs
Exclamation-Triangle computing an over-approximation, potential imprecision

I Concrete Σ = { x 7→ n | − 1 ≤ n ≤ 11 ∧ n 6= 10 }
I Abstract σ] = x 7→ [−1, 11]

=⇒ may require better abstractions!

Merging can also be applied to arrays, . . . 9

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇

I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

10

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇

I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

10

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!

Exclamation-circle large nb(iterations)

Introduce generalization operator ∇

I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

10

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇

I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

10

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇

I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

10

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇
I Over-approximating least upper bound t

I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

10

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇
I Over-approximating least upper bound t
I Ensures finite termination of loop iterations

I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

10

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇
I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

10

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇
I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99]

10

Widening – Generalization Operator

1 int i = 0;
2 while(i < 100) {
3 i++;
4 }

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
... ...
99 [0, 99]
100 [0, 99]

I Stabilization reached!
Exclamation-circle large nb(iterations)

Introduce generalization operator ∇
I Over-approximating least upper bound t
I Ensures finite termination of loop iterations
I nb(iterations) does not depend on loop bound

Iteration Values of i in loop

0 [0, 0]
1 [0, 1]
2 [0, 0] ∇[0, 1] = [0, +∞]
3 [0, +∞]

Precision can be recovered through decreasing
iterations

=⇒ i = [0, 99] 10

An overview of Mopsa

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

11

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

11

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

11

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)

I Can be used as an experimentation platform

11

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

11

gitlab.com/mopsa/mopsa-analyzer

Contributors (2018–2025, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.

12

Contributors (2018–2025, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.

12

An overview of Mopsa

Key design decisions

Mopsa design

Analysis = composition of abstract domains

unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

13

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

13

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

13

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns

I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

13

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

13

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

13

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

13

Iterators to handle multiple languages

Traditional approaches
Desugar/compile programs to an intermediate representation (IR)

Example: Infer’s IR hasfive. . . .(!)constructors

Mopsa

I No loss of precision from the frontend

By default, 3-address code may result in precision loss [NP18]

I Various programming paradigms supported!
I All constructs have to be handled – but rewritings are possible
I A single AST type which can be extended for new languages

14

https://github.com/facebook/infer/blob/acbc87dbd1a81c4e8afbc3514cb75ba6e3620943/infer/src/IR/Sil.mli#L55-L87

Iterators to handle multiple languages

Traditional approaches
Desugar/compile programs to an intermediate representation (IR)

Example: Infer’s IR hasfive. . . .(!)constructors

Mopsa

I No loss of precision from the frontend

By default, 3-address code may result in precision loss [NP18]

I Various programming paradigms supported!
I All constructs have to be handled – but rewritings are possible
I A single AST type which can be extended for new languages

14

https://github.com/facebook/infer/blob/acbc87dbd1a81c4e8afbc3514cb75ba6e3620943/infer/src/IR/Sil.mli#L55-L87

Iterators to handle multiple languages

Traditional approaches
Desugar/compile programs to an intermediate representation (IR)

Example: Infer’s IR hasfive. . . .(!)constructors

Mopsa

I No loss of precision from the frontend

By default, 3-address code may result in precision loss [NP18]
I Various programming paradigms supported!
I All constructs have to be handled – but rewritings are possible
I A single AST type which can be extended for new languages

14

https://github.com/facebook/infer/blob/acbc87dbd1a81c4e8afbc3514cb75ba6e3620943/infer/src/IR/Sil.mli#L55-L87

Iterators to handle multiple languages

Traditional approaches
Desugar/compile programs to an intermediate representation (IR)

Example: Infer’s IR hasfive. . . .(!)constructors

Mopsa

I No loss of precision from the frontend
By default, 3-address code may result in precision loss [NP18]

I Various programming paradigms supported!
I All constructs have to be handled – but rewritings are possible
I A single AST type which can be extended for new languages

14

https://github.com/facebook/infer/blob/acbc87dbd1a81c4e8afbc3514cb75ba6e3620943/infer/src/IR/Sil.mli#L55-L87

Iterators to handle multiple languages

Traditional approaches
Desugar/compile programs to an intermediate representation (IR)

Example: Infer’s IR hasfive. . . .(!)constructors

Mopsa

I No loss of precision from the frontend
By default, 3-address code may result in precision loss [NP18]

I Various programming paradigms supported!

I All constructs have to be handled – but rewritings are possible
I A single AST type which can be extended for new languages

14

https://github.com/facebook/infer/blob/acbc87dbd1a81c4e8afbc3514cb75ba6e3620943/infer/src/IR/Sil.mli#L55-L87

Iterators to handle multiple languages

Traditional approaches
Desugar/compile programs to an intermediate representation (IR)

Example: Infer’s IR hasfive. . . .(!)constructors

Mopsa

I No loss of precision from the frontend
By default, 3-address code may result in precision loss [NP18]

I Various programming paradigms supported!
I All constructs have to be handled – but rewritings are possible

I A single AST type which can be extended for new languages

14

https://github.com/facebook/infer/blob/acbc87dbd1a81c4e8afbc3514cb75ba6e3620943/infer/src/IR/Sil.mli#L55-L87

Iterators to handle multiple languages

Traditional approaches
Desugar/compile programs to an intermediate representation (IR)

Example: Infer’s IR hasfive. . . .(!)constructors

Mopsa

I No loss of precision from the frontend
By default, 3-address code may result in precision loss [NP18]

I Various programming paradigms supported!
I All constructs have to be handled – but rewritings are possible
I A single AST type which can be extended for new languages

14

https://github.com/facebook/infer/blob/acbc87dbd1a81c4e8afbc3514cb75ba6e3620943/infer/src/IR/Sil.mli#L55-L87

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

15

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

15

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

15

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

15

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

15

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

15

Dynamic, semantic iterators with delegation

for(init; cond; incr) body

C.iterators.loops

Rewrite and analyze recursively

init;
while(cond) {

body;
incr;

}

for target in iterable: body

Python.Desugar.Loops

◦ Rewrite and analyze recursively
◦ Optimize for some semantic cases

it = iter(iterable)
while(1) {
try: target = next(it)
except StopIteration: break
body
}
clean it

Universal.Iterators.Loops

Matches while(...){...}
Computes fixpoint using widening

15

Expressivity through relational domains

Motivational example

1 // Hyp: a array of size len(a) ∈ [10, 20]
2 s = 0;
3 for(int i = 0; i < len(a); i++) {
4 s += a[i];
5 }

i ∈ [0, 20], len(a) ∈ [10, 20], unable to prove safe access 7

Relational domains to the rescue

I Able to express relationships between variables, e.g: 0 ≤ i < len(a) ≤ 20
I Polyhedra domain [CH78; BHZ08; BZ20]

∑
i αiVi ≤ βi

I Bindings from the convenient Apron library [JM09]

16

Expressivity through relational domains

Motivational example

1 // Hyp: a array of size len(a) ∈ [10, 20]
2 s = 0;
3 for(int i = 0; i < len(a); i++) {
4 s += a[i];
5 }

i ∈ [0, 20], len(a) ∈ [10, 20], unable to prove safe access 7

Relational domains to the rescue

I Able to express relationships between variables, e.g: 0 ≤ i < len(a) ≤ 20
I Polyhedra domain [CH78; BHZ08; BZ20]

∑
i αiVi ≤ βi

I Bindings from the convenient Apron library [JM09]

16

Expressivity through relational domains

Motivational example

1 // Hyp: a array of size len(a) ∈ [10, 20]
2 s = 0;
3 for(int i = 0; i < len(a); i++) {
4 s += a[i];
5 }

i ∈ [0, 20], len(a) ∈ [10, 20], unable to prove safe access 7

Relational domains to the rescue

I Able to express relationships between variables, e.g: 0 ≤ i < len(a) ≤ 20
I Polyhedra domain [CH78; BHZ08; BZ20]

∑
i αiVi ≤ βi

I Bindings from the convenient Apron library [JM09]

16

Expressivity through relational domains

Motivational example

1 // Hyp: a array of size len(a) ∈ [10, 20]
2 s = 0;
3 for(int i = 0; i < len(a); i++) {
4 s += a[i];
5 }

i ∈ [0, 20], len(a) ∈ [10, 20], unable to prove safe access 7

Relational domains to the rescue

I Able to express relationships between variables, e.g: 0 ≤ i < len(a) ≤ 20

I Polyhedra domain [CH78; BHZ08; BZ20]
∑

i αiVi ≤ βi

I Bindings from the convenient Apron library [JM09]

16

Expressivity through relational domains

Motivational example

1 // Hyp: a array of size len(a) ∈ [10, 20]
2 s = 0;
3 for(int i = 0; i < len(a); i++) {
4 s += a[i];
5 }

i ∈ [0, 20], len(a) ∈ [10, 20], unable to prove safe access 7

Relational domains to the rescue

I Able to express relationships between variables, e.g: 0 ≤ i < len(a) ≤ 20
I Polyhedra domain [CH78; BHZ08; BZ20]

∑
i αiVi ≤ βi

I Bindings from the convenient Apron library [JM09]

16

Expressivity through relational domains

Motivational example

1 // Hyp: a array of size len(a) ∈ [10, 20]
2 s = 0;
3 for(int i = 0; i < len(a); i++) {
4 s += a[i];
5 }

i ∈ [0, 20], len(a) ∈ [10, 20], unable to prove safe access 7

Relational domains to the rescue

I Able to express relationships between variables, e.g: 0 ≤ i < len(a) ≤ 20
I Polyhedra domain [CH78; BHZ08; BZ20]

∑
i αiVi ≤ βi

I Bindings from the convenient Apron library [JM09]

16

Relational domains in Mopsa

Difficulties arising from relational domains

I Computational cost at least O(|V|3)
I Evaluating expressions into (abstract) values is not enough!
I Need to force cohabitation of variables

Mopsa relies on rewriting, symbolic expressions and ghost variables

to leverage relational domains.

17

Relational domains in Mopsa

Difficulties arising from relational domains

I Computational cost at least O(|V|3)

I Evaluating expressions into (abstract) values is not enough!
I Need to force cohabitation of variables

Mopsa relies on rewriting, symbolic expressions and ghost variables

to leverage relational domains.

17

Relational domains in Mopsa

Difficulties arising from relational domains

I Computational cost at least O(|V|3)
I Evaluating expressions into (abstract) values is not enough!

I Need to force cohabitation of variables

Mopsa relies on rewriting, symbolic expressions and ghost variables

to leverage relational domains.

17

Relational domains in Mopsa

Difficulties arising from relational domains

I Computational cost at least O(|V|3)
I Evaluating expressions into (abstract) values is not enough!
I Need to force cohabitation of variables

Mopsa relies on rewriting, symbolic expressions and ghost variables

to leverage relational domains.

17

Relational domains in Mopsa

Difficulties arising from relational domains

I Computational cost at least O(|V|3)
I Evaluating expressions into (abstract) values is not enough!
I Need to force cohabitation of variables

Mopsa relies on rewriting, symbolic expressions and ghost variables

to leverage relational domains.

17

A zoology of domains and combinators in Mopsa

.Domain

.StatelessSimplified

.Value

.nonrel

.product;union

.Stackedproduct;switch;compose

18

https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/domain.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stateless.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified_value.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/nonrel.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stacked.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/switch.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/compose.ml

A zoology of domains and combinators in Mopsa

.Domain

.Stateless

.Simplified

.Value

.nonrel

.product;union

.Stackedproduct;switch;compose

18

https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/domain.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stateless.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified_value.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/nonrel.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stacked.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/switch.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/compose.ml

A zoology of domains and combinators in Mopsa

.Domain

.StatelessSimplified

.Value

.nonrel

.product;union

.Stackedproduct;switch;compose

18

https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/domain.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stateless.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified_value.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/nonrel.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stacked.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/switch.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/compose.ml

A zoology of domains and combinators in Mopsa

.Domain

.StatelessSimplified

.Value

.nonrel

.product;union

.Stackedproduct;switch;compose

18

https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/domain.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stateless.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified_value.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/nonrel.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stacked.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/switch.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/compose.ml

A zoology of domains and combinators in Mopsa

.Domain

.StatelessSimplified

.Value

.nonrel

.product;union

.Stackedproduct;switch;compose

18

https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/domain.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stateless.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified_value.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/nonrel.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stacked.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/switch.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/compose.ml

A zoology of domains and combinators in Mopsa

.Domain

.StatelessSimplified

.Value

.nonrel

.product;union

.Stackedproduct;switch;compose

18

https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/domain.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stateless.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified_value.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/nonrel.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stacked.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/switch.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/compose.ml

A zoology of domains and combinators in Mopsa

.Domain

.StatelessSimplified

.Value

.nonrel

.product;union

.Stacked

.product;switch;compose

18

https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/domain.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stateless.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified_value.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/nonrel.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stacked.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/switch.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/compose.ml

A zoology of domains and combinators in Mopsa

.Domain

.StatelessSimplified

.Value

.nonrel

.product;union

.Stackedproduct;switch;compose

18

https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/domain.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stateless.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/simplified_value.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/nonrel.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/value/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/sig/abstraction/stacked.mli
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/product.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/switch.ml
https://gitlab.com/mopsa/mopsa-analyzer/-/blob/v1.0/analyzer/framework/combiners/domain/compose.ml

Overview of Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Goals: explore new designs, ease development of (relational) analyses

One AST to rule them all

Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

Unified domain signature

PEN Semantic rewriting
PUZZLE-PIECE Loose coupling
MICROSCOPE Observability

DAG of abstractions

DICE-D20 Relational domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

19

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Goals: explore new designs, ease development of (relational) analyses

One AST to rule them all

Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

Unified domain signature

PEN Semantic rewriting
PUZZLE-PIECE Loose coupling
MICROSCOPE Observability

DAG of abstractions

DICE-D20 Relational domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

19

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Goals: explore new designs, ease development of (relational) analyses

One AST to rule them all

Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

Unified domain signature

PEN Semantic rewriting
PUZZLE-PIECE Loose coupling
MICROSCOPE Observability

DAG of abstractions

DICE-D20 Relational domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

19

gitlab.com/mopsa/mopsa-analyzer

Overview of Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Goals: explore new designs, ease development of (relational) analyses

One AST to rule them all

Flag Multilanguage support
FILE-CODE Expressiveness
RECYCLE Reusability

Unified domain signature

PEN Semantic rewriting
PUZZLE-PIECE Loose coupling
MICROSCOPE Observability

DAG of abstractions

DICE-D20 Relational domains
CUBES Composition
COMMENTS Cooperation

∧

Py.list_len Py.list_els

◦

U.numeric

∧ Reduced product

◦ Composition

19

gitlab.com/mopsa/mopsa-analyzer

An overview of Mopsa

Works around Mopsa

Coreutils – Ouadjaout and Miné [OM20]

I Large support of libc
through stubs

I Check for all C runtime
errors

I Ability to analyze real-world
programs

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
dirname 21.68s 99.61% 11,307
echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774
pwd 22.04s 99.62% 11,502
rmdir 39.00s 99.22% 11,699
sleep 23.79s 99.46% 11,546
tee 35.69s 98.76% 12,057
timeout 32.28s 98.51% 12,420
true 9.55s 99.72% 10,774
uname 20.61s 99.52% 11,943
users 20.82s 99.06% 11,668
whoami 13.03s 99.66% 11,329

20

Coreutils – Ouadjaout and Miné [OM20]

I Large support of libc
through stubs

I Check for all C runtime
errors

I Ability to analyze real-world
programs

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
dirname 21.68s 99.61% 11,307
echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774
pwd 22.04s 99.62% 11,502
rmdir 39.00s 99.22% 11,699
sleep 23.79s 99.46% 11,546
tee 35.69s 98.76% 12,057
timeout 32.28s 98.51% 12,420
true 9.55s 99.72% 10,774
uname 20.61s 99.52% 11,943
users 20.82s 99.06% 11,668
whoami 13.03s 99.66% 11,329

20

Coreutils – Ouadjaout and Miné [OM20]

I Large support of libc
through stubs

I Check for all C runtime
errors

I Ability to analyze real-world
programs

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
dirname 21.68s 99.61% 11,307
echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774
pwd 22.04s 99.62% 11,502
rmdir 39.00s 99.22% 11,699
sleep 23.79s 99.46% 11,546
tee 35.69s 98.76% 12,057
timeout 32.28s 98.51% 12,420
true 9.55s 99.72% 10,774
uname 20.61s 99.52% 11,943
users 20.82s 99.06% 11,668
whoami 13.03s 99.66% 11,329

20

Coreutils – Ouadjaout and Miné [OM20]

I Large support of libc
through stubs

I Check for all C runtime
errors

I Ability to analyze real-world
programs

Benchmark Time Selectivity # checks

basename 33.79s 98.65% 11,731
dirname 21.68s 99.61% 11,307
echo 19.26s 99.43% 11,010
false 14.50s 99.72% 10,774
pwd 22.04s 99.62% 11,502
rmdir 39.00s 99.22% 11,699
sleep 23.79s 99.46% 11,546
tee 35.69s 98.76% 12,057
timeout 32.28s 98.51% 12,420
true 9.55s 99.72% 10,774
uname 20.61s 99.52% 11,943
users 20.82s 99.06% 11,668
whoami 13.03s 99.66% 11,329

20

Multilanguage Analysis – Monat, Ouadjaout, and Miné [MOM21]

Assessment 20% of the 200 most popular Python libraries rely on C code

Dangers: different values (Z vs. Int32); shared memory state

Our approach: Combined analysis of C, Python and interface code

Library C + Py. Loc Tests CLOCK/test # proved checks
checks % # checks

noise 1397 15/15 1.2s 99.7% 6690
cdistance 2345 28/28 4.1s 98.0% 13716
llist 4515 167/194 1.5s 98.8% 36255
ahocorasick 4877 46/92 1.2s 96.7% 6722
levenshtein 5798 17/17 5.3s 84.6% 4825
bitarray 5841 159/216 1.6s 94.9% 25566

21

https://github.com/caseman/noise
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/ilanschnell/bitarray

Multilanguage Analysis – Monat, Ouadjaout, and Miné [MOM21]

Assessment 20% of the 200 most popular Python libraries rely on C code

Dangers: different values (Z vs. Int32); shared memory state

Our approach: Combined analysis of C, Python and interface code

Library C + Py. Loc Tests CLOCK/test # proved checks
checks % # checks

noise 1397 15/15 1.2s 99.7% 6690
cdistance 2345 28/28 4.1s 98.0% 13716
llist 4515 167/194 1.5s 98.8% 36255
ahocorasick 4877 46/92 1.2s 96.7% 6722
levenshtein 5798 17/17 5.3s 84.6% 4825
bitarray 5841 159/216 1.6s 94.9% 25566

21

https://github.com/caseman/noise
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/ilanschnell/bitarray

Multilanguage Analysis – Monat, Ouadjaout, and Miné [MOM21]

Assessment 20% of the 200 most popular Python libraries rely on C code

Dangers: different values (Z vs. Int32); shared memory state

Our approach: Combined analysis of C, Python and interface code

Library C + Py. Loc Tests CLOCK/test # proved checks
checks % # checks

noise 1397 15/15 1.2s 99.7% 6690
cdistance 2345 28/28 4.1s 98.0% 13716
llist 4515 167/194 1.5s 98.8% 36255
ahocorasick 4877 46/92 1.2s 96.7% 6722
levenshtein 5798 17/17 5.3s 84.6% 4825
bitarray 5841 159/216 1.6s 94.9% 25566

21

https://github.com/caseman/noise
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/ilanschnell/bitarray

Non-exploitability – Parolini and Miné [PM24]

I Focus on bugs that a user can trigger through program interaction

I Relies on combination of taint+value analysis

22

Non-exploitability – Parolini and Miné [PM24]

I Focus on bugs that a user can trigger through program interaction
I Relies on combination of taint+value analysis

22

Non-exploitability – Parolini and Miné [PM24]

I Focus on bugs that a user can trigger through program interaction
I Relies on combination of taint+value analysis

22

Software Verification Competition [Mon+24]

I Tools have to

• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

23

Software Verification Competition [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)

• Within limited machine resources (15 minutes CPU time, 8GB RAM)
I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

23

Software Verification Competition [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

23

Software Verification Competition [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference

I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

23

Software Verification Competition [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

23

Software Verification Competition [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score 23

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]

Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

24

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

24

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

24

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

24

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs

I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

24

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]

I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

24

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]

I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

24

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]

I Sufficient precondition inference [MM24a; MM24b]

24

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

24

Easing maintenance and implementation

Providing transparent analysis results

Raising the bar in static analyzer transparency

$ static-analysis-tool file

...
No errors found

What has been checked? What has not?

25

Raising the bar in static analyzer transparency

$ static-analysis-tool file
...

No errors found

What has been checked? What has not?

25

Raising the bar in static analyzer transparency

$ static-analysis-tool file
...
No errors found

What has been checked? What has not?

25

Raising the bar in static analyzer transparency

$ static-analysis-tool file
...
No errors found

What has been checked? What has not?

25

Mopsa’s approach to being transparent – at a high level

if a# 6v p# then
add_alarm a# p#

if a# 6v p# then
add_alarm a# p#

else
add_safe_check p#

26

Mopsa’s approach to being transparent – at a high level

if a# 6v p# then
add_alarm a# p#

if a# 6v p# then
add_alarm a# p#

else
add_safe_check p#

26

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context

I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt

Itv Poly

x++

Safe Safe

y++

Alarm Safe

Selectivity

50% 100%

27

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt

Itv Poly

x++

Safe Safe

y++

Alarm Safe

Selectivity

50% 100%

27

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt

Itv Poly

x++

Safe Safe

y++

Alarm Safe

Selectivity

50% 100%

27

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt

Itv Poly

x++

Safe Safe

y++

Alarm Safe

Selectivity

50% 100%

27

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt Itv

Poly

x++ Safe

Safe

y++ Alarm

Safe

Selectivity 50%

100%

27

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt Itv Poly
x++ Safe Safe
y++ Alarm Safe
Selectivity 50% 100%

27

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement
I “2,756 alarms” 87% checks proved correct – “selectivity”
I Program size “expression complexity”

Analysis of coreutils fmt

28

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement

I “2,756 alarms” 87% checks proved correct – “selectivity”
I Program size “expression complexity”

Analysis of coreutils fmt

28

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement
I “2,756 alarms” 87% checks proved correct – “selectivity”

I Program size “expression complexity”

Analysis of coreutils fmt

28

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement
I “2,756 alarms” 87% checks proved correct – “selectivity”
I Program size “expression complexity”

Analysis of coreutils fmt

28

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement
I “2,756 alarms” 87% checks proved correct – “selectivity”
I Program size “expression complexity”

Analysis of coreutils fmt

28

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x)

, handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

29

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

29

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash

7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

29

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently

7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

29

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently

7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

29

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

29

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect

4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

29

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters

5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

29

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

29

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

29

Easing maintenance and implementation

Avoiding regressions

Avoiding regressions

=⇒ check for precision changes

Benchmarks with precision oracles

I Know whether a given alarm should be raised
I Based on manual analysis, not scalable
I NIST’s Juliet Benchmarks, SV-Comp labeling of tasks (coarse)
I Can provide absolute precision measure

Otherwise: relative precision measures, rely on our selectivity computation.

30

Avoiding regressions

=⇒ check for precision changes

Benchmarks with precision oracles

I Know whether a given alarm should be raised
I Based on manual analysis, not scalable
I NIST’s Juliet Benchmarks, SV-Comp labeling of tasks (coarse)
I Can provide absolute precision measure

Otherwise: relative precision measures, rely on our selectivity computation.

30

Avoiding regressions

=⇒ check for precision changes

Benchmarks with precision oracles

I Know whether a given alarm should be raised
I Based on manual analysis, not scalable
I NIST’s Juliet Benchmarks, SV-Comp labeling of tasks (coarse)
I Can provide absolute precision measure

Otherwise: relative precision measures, rely on our selectivity computation.

30

Comparing analysis reports

mopsa-diff script, used to compare:

I analysis report(s): either single output or set of outputs
I usecases: different configurations, different versions of Mopsa

--- baseline/touch-many-symbolic-args-a4.json
+++ pplite/touch-many-symbolic-args-a4.json

- time: 589.0760
+ time: 675.1761

+ parse-datetime.y:1399.44-46: alarm: Invalid memory access
- parse-datetime.y:965.56-71: alarm: Invalid memory access
- parse-datetime.y:980.25-52: alarm: Invalid memory access
- parse-datetime.y:1003.23-50: alarm: Invalid memory access
- parse-datetime.y:921.56-71: alarm: Invalid memory access
- parse-datetime.c:1733.2-8: alarm: Invalid memory access
- parse-datetime.y:781.26-41: alarm: Invalid memory access
- parse-datetime.y:772.23-38: alarm: Invalid memory access
- parse-datetime.y:755.23-38: alarm: Invalid memory access
- parse-datetime.y:973.25-52: alarm: Invalid memory access
- parse-datetime.y:610.8-41: alarm: Invalid memory access
- parse-datetime.y:743.25-40: alarm: Invalid memory access

139 reports compared
avg. time change +52.065s
avg. speedup -36%
new alarms 2
removed alarms 32
new assumptions 0
removed assumptions 0
new successes 0
new failures 0

31

Comparing analysis reports

mopsa-diff script, used to compare:

I analysis report(s): either single output or set of outputs
I usecases: different configurations, different versions of Mopsa

--- baseline/touch-many-symbolic-args-a4.json
+++ pplite/touch-many-symbolic-args-a4.json

- time: 589.0760
+ time: 675.1761

+ parse-datetime.y:1399.44-46: alarm: Invalid memory access
- parse-datetime.y:965.56-71: alarm: Invalid memory access
- parse-datetime.y:980.25-52: alarm: Invalid memory access
- parse-datetime.y:1003.23-50: alarm: Invalid memory access
- parse-datetime.y:921.56-71: alarm: Invalid memory access
- parse-datetime.c:1733.2-8: alarm: Invalid memory access
- parse-datetime.y:781.26-41: alarm: Invalid memory access
- parse-datetime.y:772.23-38: alarm: Invalid memory access
- parse-datetime.y:755.23-38: alarm: Invalid memory access
- parse-datetime.y:973.25-52: alarm: Invalid memory access
- parse-datetime.y:610.8-41: alarm: Invalid memory access
- parse-datetime.y:743.25-40: alarm: Invalid memory access

139 reports compared
avg. time change +52.065s
avg. speedup -36%
new alarms 2
removed alarms 32
new assumptions 0
removed assumptions 0
new successes 0
new failures 0

31

Comparing analysis reports

mopsa-diff script, used to compare:

I analysis report(s): either single output or set of outputs
I usecases: different configurations, different versions of Mopsa

--- baseline/touch-many-symbolic-args-a4.json
+++ pplite/touch-many-symbolic-args-a4.json

- time: 589.0760
+ time: 675.1761

+ parse-datetime.y:1399.44-46: alarm: Invalid memory access
- parse-datetime.y:965.56-71: alarm: Invalid memory access
- parse-datetime.y:980.25-52: alarm: Invalid memory access
- parse-datetime.y:1003.23-50: alarm: Invalid memory access
- parse-datetime.y:921.56-71: alarm: Invalid memory access
- parse-datetime.c:1733.2-8: alarm: Invalid memory access
- parse-datetime.y:781.26-41: alarm: Invalid memory access
- parse-datetime.y:772.23-38: alarm: Invalid memory access
- parse-datetime.y:755.23-38: alarm: Invalid memory access
- parse-datetime.y:973.25-52: alarm: Invalid memory access
- parse-datetime.y:610.8-41: alarm: Invalid memory access
- parse-datetime.y:743.25-40: alarm: Invalid memory access

139 reports compared
avg. time change +52.065s
avg. speedup -36%
new alarms 2
removed alarms 32
new assumptions 0
removed assumptions 0
new successes 0
new failures 0

31

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are

I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

32

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are

I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

32

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are

I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

32

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code

I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

32

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code
I open-source – for the sake of reproducible science

I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

32

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

32

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach

• ∗ stubs can be added in marginal cases

32

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

32

Easing maintenance and implementation

Easing debugging

Where static analyzers usually start from

I Analysis output Too coarse

I Printing abstract state using builtins Not interactive
I Interpretation trace Can be dozens of gigabytes of text

33

Where static analyzers usually start from

I Analysis output Too coarse
I Printing abstract state using builtins Not interactive

I Interpretation trace Can be dozens of gigabytes of text

33

Where static analyzers usually start from

I Analysis output Too coarse
I Printing abstract state using builtins Not interactive
I Interpretation trace Can be dozens of gigabytes of text

33

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints

• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

34

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints

• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

34

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints

• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

34

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location

• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

34

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression

• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

34

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

34

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation

I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

34

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

34

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state

• Projection on specific variables

I Some scripting capabilities

34

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

34

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

34

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

IDE support

I Language Server Protocol for linters (report alarms)

I Debug Adapter Protocol providing interactive engine interface
I Both protocols introduced by VSCode, supported by multiple IDEs

35

IDE support

I Language Server Protocol for linters (report alarms)
I Debug Adapter Protocol providing interactive engine interface

I Both protocols introduced by VSCode, supported by multiple IDEs

35

IDE support

I Language Server Protocol for linters (report alarms)
I Debug Adapter Protocol providing interactive engine interface
I Both protocols introduced by VSCode, supported by multiple IDEs

35

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs
I In practice, some bugs will only be detected in large codebases
I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

36

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs

I In practice, some bugs will only be detected in large codebases
I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

36

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs
I In practice, some bugs will only be detected in large codebases

I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

36

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs
I In practice, some bugs will only be detected in large codebases
I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

36

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs
I In practice, some bugs will only be detected in large codebases
I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

36

Testcase reduction – II

37

Testcase reduction – III

Internal errors debugging

I Highly helpful to significantly reduce debugging time of runtime errors
(Apron mishandlings, raised exceptions, …)

I Has been applied to coreutils programs, SV-Comp programs of 10,000+ LoC

Reference Origin Original LoC Reduced LoC Reduction

Issue 76 SV-Comp 28,737 18 99.94%
Issue 81 SV-Comp 15,627 8 99.95%
Issue 134 SV-Comp 17,411 10 99.94%
Issue 135 SV-Comp 7,016 12 99.83%
M.R. 130 coreutils 77,981 20 99.97%
M.R. 145 coreutils 77,427 19 99.98%

38

https://gitlab.com/mopsa/mopsa-analyzer/-/issues/76
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/81
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/134
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/135
https://gitlab.com/mopsa/mopsa-analyzer/-/merge_requests/130#note_1516013076
https://gitlab.com/mopsa/mopsa-analyzer/-/commit/34baaa483725cb81bacf6cc8144fc9c86a8bdd63

Testcase reduction – III

Internal errors debugging

I Highly helpful to significantly reduce debugging time of runtime errors
(Apron mishandlings, raised exceptions, …)

I Has been applied to coreutils programs, SV-Comp programs of 10,000+ LoC

Reference Origin Original LoC Reduced LoC Reduction

Issue 76 SV-Comp 28,737 18 99.94%
Issue 81 SV-Comp 15,627 8 99.95%
Issue 134 SV-Comp 17,411 10 99.94%
Issue 135 SV-Comp 7,016 12 99.83%
M.R. 130 coreutils 77,981 20 99.97%
M.R. 145 coreutils 77,427 19 99.98%

38

https://gitlab.com/mopsa/mopsa-analyzer/-/issues/76
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/81
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/134
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/135
https://gitlab.com/mopsa/mopsa-analyzer/-/merge_requests/130#note_1516013076
https://gitlab.com/mopsa/mopsa-analyzer/-/commit/34baaa483725cb81bacf6cc8144fc9c86a8bdd63

Testcase reduction – IV

Differential-configuration debugging

$ mopsa-c -config=confA.json file.c
Alarm: assertion failure
$ mopsa-c -config=confB.json file.c
No alarm

Has been used to simplify cases in externally reported soundness issues

39

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build

• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make

I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

40

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build

• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

40

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options

• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

40

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

40

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make

I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

40

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

40

Handling multi-file projects

creduce limited to reducing a specific file
Mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file 40

Easing maintenance and implementation

A plug-in system of analysis observers

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

41

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis

I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

41

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening

I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

41

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage

I Heuristic unsoundness/imprecision detection
I Profiling

41

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection

I Profiling

41

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

41

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

41

Coverage hooks

Coverage

I Global metric for the analysis’ results
I Good to detect issues in the instrumentation of the fully context-sensitive
analysis

No symbolic argument
./src/coreutils-8.30/src/fmt.c:

'main' 76% of 72 statements analyzed
'set_prefix' 100% of 12 statements analyzed
'same_para' 100% of 1 statement analyzed
'get_line' 100% of 30 statements analyzed
'fmt' 100% of 7 statements analyzed
'base_cost' 100% of 16 statements analyzed
'line_cost' 100% of 10 statements analyzed
'get_prefix' 100% of 18 statements analyzed

Symbolic arguments
./src/coreutils-8.30/src/fmt.c:

'main' 100% of 72 statements analyzed

42

Heuristic unsoundness/imprecision detection

Detection of unsound transfer functions
Bottom shouldn’t appear after some statements (such as assignments)

Detection of imprecise analysis
Warns when top expressions are created

Simplifies the search for sources of large imprecision (esp. with rewritings)

43

Profiling

Standard profiling
Measures which parts of Mopsa are the most time-consuming

Abstract profiling hook
Measures which parts of the analyzed program are the most time-consuming

I Loop-level profiling
I Function-level profiling

Mopsa analysis of coreutils fmt Search ic

check_punctuation

strlen

putchar_unlocked

line_cost

fmt

g..
fmt_paragraph

flush_paragraph
get_line

ge..

put_linebase_cost
strchr

main

fputs..

g..

get_paragraph

memmove

put_word

%program

put_space

put_paragraph

44

Profiling

Standard profiling
Measures which parts of Mopsa are the most time-consuming

Abstract profiling hook
Measures which parts of the analyzed program are the most time-consuming

I Loop-level profiling
I Function-level profiling

Mopsa analysis of coreutils fmt Search ic

check_punctuation

strlen

putchar_unlocked

line_cost

fmt

g..
fmt_paragraph

flush_paragraph
get_line

ge..

put_linebase_cost
strchr

main

fputs..

g..

get_paragraph

memmove

put_word

%program

put_space

put_paragraph

44

Profiling

Standard profiling
Measures which parts of Mopsa are the most time-consuming

Abstract profiling hook
Measures which parts of the analyzed program are the most time-consuming

I Loop-level profiling
I Function-level profiling

Mopsa analysis of coreutils fmt Search ic

check_punctuation

strlen

putchar_unlocked

line_cost

fmt

g..
fmt_paragraph

flush_paragraph
get_line

ge..

put_linebase_cost
strchr

main

fputs..

g..

get_paragraph

memmove

put_word

%program

put_space

put_paragraph

44

Profiling – II

Apron vs PPLite on Coreutils touch

I PPLite is 14% slower but more precise (11 alarms removed). Why?

I Suggestion from Enea Zaffanella: widening operator.
I Easy to confirm intuition!

45

Profiling – II

Apron vs PPLite on Coreutils touch

I PPLite is 14% slower but more precise (11 alarms removed). Why?
I Suggestion from Enea Zaffanella: widening operator.

I Easy to confirm intuition!

45

Profiling – II

Apron vs PPLite on Coreutils touch

I PPLite is 14% slower but more precise (11 alarms removed). Why?
I Suggestion from Enea Zaffanella: widening operator.
I Easy to confirm intuition!

45

Profiling – II

Apron vs PPLite on Coreutils touch

I PPLite is 14% slower but more precise (11 alarms removed). Why?
I Suggestion from Enea Zaffanella: widening operator.
I Easy to confirm intuition!

45

Easing maintenance and implementation

Related work

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

46

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]

I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

46

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction

I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

46

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP [LDB19]

I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

46

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

46

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

46

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:
• Mixing concrete+abstract [MVR23]

• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

46

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:
• Mixing concrete+abstract [MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

46

Conclusion

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.

I Combination of existing techniques and new tools to debug & profile Mopsa

“std. tools on the concrete execution of the abstract interpreter”
 “new tools on abstract execution of target program”

Ongoing challenges around maintenance

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

47

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa

“std. tools on the concrete execution of the abstract interpreter”
 “new tools on abstract execution of target program”

Ongoing challenges around maintenance

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

47

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges around maintenance

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

47

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges around maintenance

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

47

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges around maintenance

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

47

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges around maintenance

I Handling the exponential number of configurations

I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

47

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges around maintenance

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)

I Onboarding material
I Online availability, install-free tool testing

47

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges around maintenance

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material

I Online availability, install-free tool testing

47

Conclusion

Our current approach

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Ongoing challenges around maintenance

I Handling the exponential number of configurations
I Code maintenance time is still high (for me)
I Onboarding material
I Online availability, install-free tool testing

47

References – I

[AMN17] Esben Sparre Andreasen, Anders Møller, and
Benjamin Barslev Nielsen. “Systematic approaches for increasing
soundness and precision of static analyzers”. In: ed. by Karim Ali and
Cristina Cifuentes. ACM, 2017, pp. 31–36. doi: 10.1145/3088515.3088521.

[Bau+22] Guillaume Bau et al. “Abstract interpretation of Michelson
smart-contracts”. In: ed. by Laure Gonnord and Laura Titolo. ACM, 2022,
pp. 36–43. doi: 10.1145/3520313.3534660.

[BBY17] S. Blazy, D. Bühler, and B. Yakobowski. “Structuring Abstract
Interpreters Through State and Value Abstractions”. In: LNCS. Springer,
2017, pp. 112–130.

https://doi.org/10.1145/3088515.3088521
https://doi.org/10.1145/3520313.3534660

References – II

[Ber+10] J. Bertrane et al. “Static analysis and verification of aerospace
software by abstract interpretation”. In: AIAA-2010-3385. 2010.

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “The Parma
Polyhedra Library: Toward a complete set of numerical abstractions
for the analysis and verification of hardware and software systems”.
In: Sci. Comput. Program. 1-2 (2008), pp. 3–21.

[BZ20] Anna Becchi and Enea Zaffanella. “PPLite: Zero-overhead encoding of
NNC polyhedra”. In: Inf. Comput. (2020), p. 104620. doi:
10.1016/J.IC.2020.104620.

[CH78] Patrick Cousot and Nicolas Halbwachs. “Automatic Discovery of
Linear Restraints Among Variables of a Program”. In: 1978.

https://doi.org/10.1016/J.IC.2020.104620

References – III

[DM19] David Delmas and Antoine Miné. “Analysis of Software Patches Using
Numerical Abstract Interpretation”. In: ed. by Bor-Yuh Evan Chang.
Lecture Notes in Computer Science. Springer, 2019, pp. 225–246. doi:
10.1007/978-3-030-32304-2_12.

[DOM21] David Delmas, Abdelraouf Ouadjaout, and Antoine Miné. “Static
Analysis of Endian Portability by Abstract Interpretation”. In: Lecture
Notes in Computer Science. Springer, 2021, pp. 102–123.

[Fle+24] Markus Fleischmann et al. “Constraint-Based Test Oracles for
Program Analyzers”. In: ed. by Vladimir Filkov, Baishakhi Ray, and
Minghui Zhou. ACM, 2024, pp. 344–355. doi: 10.1145/3691620.3695035.

https://doi.org/10.1007/978-3-030-32304-2_12
https://doi.org/10.1145/3691620.3695035

References – IV

[Hol+24a] Karoliine Holter et al. “Abstract Debuggers: Exploring Program
Behaviors using Static Analysis Results”. In: Onward! ’24. Pasadena, CA,
USA: Association for Computing Machinery, 2024, pp. 130–146. doi:
10.1145/3689492.3690053.

[Hol+24b] Karoliine Holter et al. “Abstract Debugging with GobPie”. In: ed. by
Elisa Gonzalez Boix and Christophe Scholliers. ACM, 2024, pp. 32–33. doi:
10.1145/3678720.3685320.

[JM09] Bertrand Jeannet and Antoine Miné. “Apron: A Library of Numerical
Abstract Domains for Static Analysis”. In: Lecture Notes in Computer
Science. Springer, 2009, pp. 661–667. doi:
10.1007/978-3-642-02658-4_52.

https://doi.org/10.1145/3689492.3690053
https://doi.org/10.1145/3678720.3685320
https://doi.org/10.1007/978-3-642-02658-4_52

References – V

[JMO18] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout.
“Modular Static Analysis of String Manipulations in C Programs”. In:
ed. by Andreas Podelski. Lecture Notes in Computer Science. Springer, 2018,
pp. 243–262. doi: 10.1007/978-3-319-99725-4_16.

[Jou+19] M. Journault et al. “Combinations of reusable abstract domains for a
multilingual static analyzer”. In: New York, USA, July 2019, pp. 1–17.

[Kai+24] David Kaindlstorfer et al. “Interrogation Testing of Program Analyzers
for Soundness and Precision Issues”. In: ed. by Vladimir Filkov,
Baishakhi Ray, and Minghui Zhou. ACM, 2024, pp. 319–330. doi:
10.1145/3691620.3695034.

https://doi.org/10.1007/978-3-319-99725-4_16
https://doi.org/10.1145/3691620.3695034

References – VI

[KCW19] Christian Klinger, Maria Christakis, and Valentin Wüstholz.
“Differentially testing soundness and precision of program
analyzers”. In: ed. by Dongmei Zhang and Anders Møller. ACM, 2019,
pp. 239–250. doi: 10.1145/3293882.3330553.

[LDB19] Linghui Luo, Julian Dolby, and Eric Bodden. “MagpieBridge: A General
Approach to Integrating Static Analyses into IDEs and Editors (Tool
Insights Paper)”. In: ed. by Alastair F. Donaldson. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, 21:1–21:25. doi:
10.4230/LIPICS.ECOOP.2019.21.

[Liv+15] Benjamin Livshits et al. “In defense of soundiness: a manifesto”. In:
Commun. ACM 2 (2015), pp. 44–46. doi: 10.1145/2644805.

https://doi.org/10.1145/3293882.3330553
https://doi.org/10.4230/LIPICS.ECOOP.2019.21
https://doi.org/10.1145/2644805

References – VII

[MFM24] Raphaël Monat, Aymeric Fromherz, and Denis Merigoux. “Formalizing
Date Arithmetic and Statically Detecting Ambiguities for the Law”. In:
ed. by Stephanie Weirich. Lecture Notes in Computer Science. Springer, 2024,
pp. 421–450. doi: 10.1007/978-3-031-57267-8_16.

[Min17] Antoine Miné. “Tutorial on Static Inference of Numeric Invariants by
Abstract Interpretation”. In: Found. Trends Program. Lang. 3-4 (2017),
pp. 120–372.

[MM24a] Marco Milanese and Antoine Miné. “Generation of Violation
Witnesses by Under-Approximating Abstract Interpretation”. In: ed. by
Rayna Dimitrova, Ori Lahav, and Sebastian Wolff. Lecture Notes in Computer
Science. Springer, 2024, pp. 50–73. doi: 10.1007/978-3-031-50524-9_3.

https://doi.org/10.1007/978-3-031-57267-8_16
https://doi.org/10.1007/978-3-031-50524-9_3

References – VIII

[MM24b] Marco Milanese and Antoine Miné. “Under-Approximating Memory
Abstractions”. In: ed. by Roberto Giacobazzi and Alessandra Gorla. Lecture
Notes in Computer Science. Springer, 2024, pp. 300–326. doi:
10.1007/978-3-031-74776-2_12.

[MOM20a] R. Monat, A. Ouadjaout, and A. Miné. “Static Type Analysis by Abstract
Interpretation of Python Programs”. In: LIPIcs. 2020.

[MOM20b] R. Monat, A. Ouadjaout, and A. Miné. “Value and allocation sensitivity
in static Python analyses”. In: ACM, 2020, pp. 8–13. doi:
10.1145/3394451.3397205.

[MOM21] R. Monat, A. Ouadjaout, and A. Miné. “A Multilanguage Static Analysis
of Python Programs with Native C Extensions”. In: 2021.

https://doi.org/10.1007/978-3-031-74776-2_12
https://doi.org/10.1145/3394451.3397205

References – IX

[Mon+24] Raphaël Monat et al. “Mopsa-C: Improved Verification for C Programs,
Simple Validation of Correctness Witnesses (Competition
Contribution)”. In: Lecture Notes in Computer Science. Springer, 2024,
pp. 387–392.

[MVR23] Mats Van Molle, Bram Vandenbogaerde, and Coen De Roover.
“Cross-Level Debugging for Static Analysers”. In: ed. by João Saraiva,
Thomas Degueule, and Elizabeth Scott. ACM, 2023, pp. 138–148. doi:
10.1145/3623476.3623512.

https://doi.org/10.1145/3623476.3623512

References – X

[NP18] Kedar S. Namjoshi and Zvonimir Pavlinovic. “The Impact of Program
Transformations on Static Program Analysis”. In: ed. by
Andreas Podelski. Lecture Notes in Computer Science. Springer, 2018,
pp. 306–325. doi: 10.1007/978-3-319-99725-4_19.

[OM20] A. Ouadjaout and A. Miné. “A Library Modeling Language for the
Static Analysis of C Programs”. In: ed. by David Pichardie and
Mihaela Sighireanu. Lecture Notes in Computer Science. Springer, 2020,
pp. 223–247. doi: 10.1007/978-3-030-65474-0_11.

[PM24] Francesco Parolini and Antoine Miné. “Sound Abstract
Nonexploitability Analysis”. In: Lecture Notes in Computer Science.
Springer, 2024, pp. 314–337.

https://doi.org/10.1007/978-3-319-99725-4_19
https://doi.org/10.1007/978-3-030-65474-0_11

References – XI

[Reg+12] John Regehr et al. “Test-case reduction for C compiler bugs”. In: ed. by
Jan Vitek, Haibo Lin, and Frank Tip. ACM, 2012, pp. 335–346. doi:
10.1145/2254064.2254104.

[TLR20] Jubi Taneja, Zhengyang Liu, and John Regehr. “Testing static analyses
for precision and soundness”. In: ACM, 2020, pp. 81–93. doi:
10.1145/3368826.3377927.

[VMM23] Milla Valnet, Raphaël Monat, and Antoine Miné. “Analyse statique de
valeurs par interprétation abstraite de programmes fonctionnels
manipulant des types algébriques récursifs”. In: ed. by Timothy Bourke
and Delphine Demange. Praz-sur-Arly, France, Jan. 2023, pp. 211–242.

https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/3368826.3377927

	Introduction
	

	An AI primer
	Key Ingredients

	An overview of Mopsa
	
	Key design decisions
	Works around Mopsa

	Easing maintenance and implementation
	Providing transparent analysis results
	Avoiding regressions
	Easing debugging
	A plug-in system of analysis observers
	Related work

	Conclusion
	

	Appendix
	References

