
How static programanalysis can help
trusting Python programs

Raphaël Monat – SyCoMoRES team

rmonat.fr

InCyber
3 March 2025

rmonat.fr

Introduction

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations

Automated verification of Catala programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations

Automated verification of Catala programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms

I Formal methods for public administrations
Automated verification of Catala programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations

Automated verification of Catala programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations

Automated verification of Catala programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations

Automated verification of Catala programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems

I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations

Automated verification of Catala programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)

I Type systems for privacy

1

whoami

Research Scientist at Inria since Sep. 2022.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations

Automated verification of Catala programs

Other Research Interests in SyCoMoRES

I Scheduling for real-time embedded systems
I Binary code analysis [Bal+19] (for worst-case execution time, security)
I Type systems for privacy

1

Automated Program Analysis

Target program

Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!

2

Automated Program Analysis

Target program Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!

2

Automated Program Analysis

Target program Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!

2

Automated Program Analysis

Target program Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!

2

Automated Program Analysis

Target program Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!

2

Automated Program Analysis

Target program Program analyzer

3

7

?

Motivation
Sheer quantity of programs and changes during their life:

Manual processes (e.g. testing, manual verification) will not scale!

2

Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Sound

3

Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

SoundComplete

3

Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

3

Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

3

Turing & Rice to the Rescue (or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

∅
Rice’s theorem

3

Turing & Rice to the Rescue (or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

Abstract
Interpretation

∅
Rice’s theorem

3

Abstract Interpretation for Software Safety

SJprog K

D (concrete world)

S]Jprog K

D] (abstract world)

γ

4

Abstract Interpretation for Software Safety

SJprog K

Bad states

D (concrete world)

S]Jprog K

D] (abstract world)

γ

4

Abstract Interpretation for Software Safety

SJprog K

Bad states

D (concrete world)

Tests

S]Jprog K

D] (abstract world)

γ

4

Abstract Interpretation for Software Safety

SJprog K

Bad states

D (concrete world)

Tests

S]Jprog K

D] (abstract world)

γ

4

Abstract Interpretation for Software Safety

SJprog K

Bad states

D (concrete world)

Tests

S]Jprog K

D] (abstract world)

γ

4

Abstract Interpretation for Software Safety

SJprog K

Bad states

D (concrete world)

Tests

S]Jprog K

D] (abstract world)

γ

4

Abstract Interpretation for Software Safety

SJprog K

Bad states

D (concrete world)

Tests are not sound

S]Jprog K

D] (abstract world)

γ

4

Abstract Interpretation for Software Safety

SJprog K

Bad states

D (concrete world)

S]Jprog K

Bad states

D] (abstract world)

γ

Safe program

4

Abstract Interpretation for Software Safety

SJprog K

Bad states

D (concrete world)

S]Jprog K

Bad states

D] (abstract world)

γ

True alarm

4

Abstract Interpretation for Software Safety

SJprog K

Bad states

D (concrete world)

S]Jprog K

Bad states

D] (abstract world)

γ

4

Abstract Interpretation for Software Safety

SJprog K

Bad states

D (concrete world)

S]Jprog K

Bad states

D] (abstract world)

γ

False alarm (due to imprecisions)

4

A Brief History of Abstract Interpretation

1977: foundational paper by Radhia
and Patrick Cousot [CC77]

2010: critical software certification
using Astrée [Ber+10]

Now: democratizing static analysis?

I From embedded C software to

• General C software (dynamic allocation, ...)
• Other languages

I From full programs to libraries
I Framework to implement analyses

5

A Brief History of Abstract Interpretation

1977: foundational paper by Radhia
and Patrick Cousot [CC77]

2010: critical software certification
using Astrée [Ber+10]

Now: democratizing static analysis?

I From embedded C software to

• General C software (dynamic allocation, ...)
• Other languages

I From full programs to libraries
I Framework to implement analyses

5

A Brief History of Abstract Interpretation

1977: foundational paper by Radhia
and Patrick Cousot [CC77]

2010: critical software certification
using Astrée [Ber+10]

Now: democratizing static analysis?

I From embedded C software to

• General C software (dynamic allocation, ...)
• Other languages

I From full programs to libraries
I Framework to implement analyses

5

A Brief History of Abstract Interpretation

1977: foundational paper by Radhia
and Patrick Cousot [CC77]

2010: critical software certification
using Astrée [Ber+10]

Now: democratizing static analysis?

I From embedded C software to

• General C software (dynamic allocation, ...)
• Other languages

I From full programs to libraries
I Framework to implement analyses

5

A Brief History of Abstract Interpretation

1977: foundational paper by Radhia
and Patrick Cousot [CC77]

2010: critical software certification
using Astrée [Ber+10]

Now: democratizing static analysis?

I From embedded C software to
• General C software (dynamic allocation, ...)

• Other languages

I From full programs to libraries
I Framework to implement analyses

5

A Brief History of Abstract Interpretation

1977: foundational paper by Radhia
and Patrick Cousot [CC77]

2010: critical software certification
using Astrée [Ber+10]

Now: democratizing static analysis?

I From embedded C software to
• General C software (dynamic allocation, ...)
• Other languages

I From full programs to libraries
I Framework to implement analyses

5

A Brief History of Abstract Interpretation

1977: foundational paper by Radhia
and Patrick Cousot [CC77]

2010: critical software certification
using Astrée [Ber+10]

Now: democratizing static analysis?

I From embedded C software to
• General C software (dynamic allocation, ...)
• Other languages

I From full programs to libraries

I Framework to implement analyses

5

A Brief History of Abstract Interpretation

1977: foundational paper by Radhia
and Patrick Cousot [CC77]

2010: critical software certification
using Astrée [Ber+10]

Now: democratizing static analysis?

I From embedded C software to
• General C software (dynamic allocation, ...)
• Other languages

I From full programs to libraries
I Framework to implement analyses

5

Dynamic programming languages

Python

18%

JavaScript

14%
Java

12%
TypeScript

8%

Go
8%

C++
6%

Ruby

6%

PHP

5% Other (< 5%)

23%

Most popular languages on GitHub

New features

I Dynamic typing
I Dynamic object structure

6

Dynamic programming languages

Python

18%

JavaScript

14%
Java

12%
TypeScript

8%

Go
8%

C++
6%

Ruby

6%

PHP

5% Other (< 5%)

23%

Most popular languages on GitHub

New features

I Dynamic typing
I Dynamic object structure

6

Outline

1 A Taste of Python

2 Analyzing Python Programs

3 Analyzing Python Programs with C Libraries

4 A Modern Program Analyzer: Mopsa

7

A Taste of Python

Python’s specificities

No standard
CPython is the reference

=⇒ manual inspection of the source code and handcrafted tests

Operator redefinition

I Calls, additions, attribute
accesses

I Operators eventually call
overloaded __methods__

Protected attributes

1 class Protected:
2 def __init__(self, priv):
3 self._priv = priv
4 def __getattribute__(self, attr):
5 if attr[0] == "_": raise AttributeError("...")
6 return object.__getattribute__(self, attr)
7
8 a = Protected(42)
9 a._priv # AttributeError raised

8

Python’s specificities

No standard
CPython is the reference

=⇒ manual inspection of the source code and handcrafted tests

Operator redefinition

I Calls, additions, attribute
accesses

I Operators eventually call
overloaded __methods__

Protected attributes

1 class Protected:
2 def __init__(self, priv):
3 self._priv = priv
4 def __getattribute__(self, attr):
5 if attr[0] == "_": raise AttributeError("...")
6 return object.__getattribute__(self, attr)
7
8 a = Protected(42)
9 a._priv # AttributeError raised

8

Python’s specificities (II)

Dual type system

I Nominal (classes, MRO [Bar+96])

I Structural (attributes)

Exceptions
Exceptions rather than specific values
I 1 + "a" TypeError
I l[len(l) + 1] IndexError

Fspath (from standard library)
1 class Path:
2 def __fspath__(self): return 42
3
4 def fspath(p):
5 if isinstance(p, (str, bytes)):
6 return p
7 elif hasattr(p, "__fspath__"):
8 r = p.__fspath__()
9 if isinstance(r, (str, bytes)):
10 return r
11 raise TypeError
12
13 fspath("/dev" if random() else Path())

9

Python’s specificities (II)

Dual type system

I Nominal (classes, MRO [Bar+96])
I Structural (attributes)

Exceptions
Exceptions rather than specific values
I 1 + "a" TypeError
I l[len(l) + 1] IndexError

Fspath (from standard library)
1 class Path:
2 def __fspath__(self): return 42
3
4 def fspath(p):
5 if isinstance(p, (str, bytes)):
6 return p
7 elif hasattr(p, "__fspath__"):
8 r = p.__fspath__()
9 if isinstance(r, (str, bytes)):
10 return r
11 raise TypeError
12
13 fspath("/dev" if random() else Path())

9

Python’s specificities (II)

Dual type system

I Nominal (classes, MRO [Bar+96])
I Structural (attributes)

Exceptions
Exceptions rather than specific values
I 1 + "a" TypeError
I l[len(l) + 1] IndexError

Fspath (from standard library)
1 class Path:
2 def __fspath__(self): return 42
3
4 def fspath(p):
5 if isinstance(p, (str, bytes)):
6 return p
7 elif hasattr(p, "__fspath__"):
8 r = p.__fspath__()
9 if isinstance(r, (str, bytes)):
10 return r
11 raise TypeError
12
13 fspath("/dev" if random() else Path())

9

Example Semantics – binary operators

a1 = eval e1; a2 = eval e2

has_field(a1,__add__)?
No

Yes

has_field(a2,__radd__)
&& type(a1) < type(a2)?

Yes

No

a3 = call a1’s __add__ on a1,a2

a3 == NotImplemented?

No

Yes

Result is a3

has_field(a2,__radd__)
&& type(a1) 6= type(a2)?

Yes

No

a3 = call a2’s __radd__ on a1,a2

a3 == NotImplemented?

Yes

No

Type Error

10

Crazy Python

Custom infix operators

1 class Infix(object):
2 def __init__(self, func): self.func = func
3 def __or__(self, other): return self.func(other)
4 def __ror__(self, other): return Infix(lambda x: self.func(other, x))
5
6 instanceof = Infix(isinstance)
7 b = 5 |instanceof| int
8
9 @Infix
10 def padd(x, y):
11 print(f"{x} + {y} = {x + y}")
12 return x + y
13 c = 2 |padd| 3

Credits tomerfiliba.com/blog/Infix-Operators/

11

tomerfiliba.com/blog/Infix-Operators/

Analyzing Python Programs

Analysis Overview

Goal
Detect runtime errors: uncaught raised exceptions

Supported constructs
Our analysis supports:
I Objects
I Exceptions
I Dynamic typing

I Introspection
I Permissive semantics
I Dynamic attributes

I Generators
I super
I Metaclasses

Unsupported constructs

I Recursive functions
I eval
I Finalizers

12

Analysis Overview

Goal
Detect runtime errors: uncaught raised exceptions

Supported constructs
Our analysis supports:
I Objects
I Exceptions
I Dynamic typing

I Introspection
I Permissive semantics
I Dynamic attributes

I Generators
I super
I Metaclasses

Unsupported constructs

I Recursive functions
I eval
I Finalizers

12

Analysis Overview

Goal
Detect runtime errors: uncaught raised exceptions

Supported constructs
Our analysis supports:
I Objects
I Exceptions
I Dynamic typing

I Introspection
I Permissive semantics
I Dynamic attributes

I Generators
I super
I Metaclasses

Unsupported constructs

I Recursive functions
I eval
I Finalizers

12

Analysis Domains Required

Averaging numbers
1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I m + l[i]

Searching for a loop invariant (l. 4)

Stateless domains: list content, list length

“Nominal type” abstraction
m : int i : int

els(l) : int

Numeric abstraction (intervals)

m ∈ [0,+∞)

els(l) ∈ [0, 20]

i ∈ [0,+∞)

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

13

Analysis Domains Required

Averaging numbers
1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I m + l[i]

Searching for a loop invariant (l. 4)

Stateless domains: list content, list length

“Nominal type” abstraction
m : int i : int

els(l) : int

Numeric abstraction (intervals)

m ∈ [0,+∞)

els(l) ∈ [0, 20]

i ∈ [0,+∞)

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

13

Analysis Domains Required

Averaging numbers
1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I m + l[i]

Searching for a loop invariant (l. 4)
Stateless domains: list content,

list length

“Nominal type” abstraction
m : int i : int els(l) : int

Numeric abstraction (intervals)

m ∈ [0,+∞)

els(l) ∈ [0, 20]

i ∈ [0,+∞)

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

13

Analysis Domains Required

Averaging numbers
1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I m + l[i]

Searching for a loop invariant (l. 4)
Stateless domains: list content,

list length

“Nominal type” abstraction
m : int i : int els(l) : int

Numeric abstraction (intervals)
m ∈ [0,+∞) els(l) ∈ [0, 20]
i ∈ [0,+∞)

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

13

Analysis Domains Required

Averaging numbers
1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I m + l[i]

Searching for a loop invariant (l. 4)
Stateless domains: list content, list length

“Nominal type” abstraction
m : int i : int els(l) : int

Numeric abstraction (intervals)
m ∈ [0,+∞) els(l) ∈ [0, 20]
i ∈ [0, 10] len(l) ∈ [5, 10]

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

13

Analysis Domains Required

Averaging numbers
1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I m + l[i]

Searching for a loop invariant (l. 4)
Stateless domains: list content, list length

“Nominal type” abstraction
m : int i : int els(l) : int

Numeric abstraction (polyhedra)
m ∈ [0,+∞) els(l) ∈ [0, 20]
0 ≤ i < len(l) 5 ≤ len(l) ≤ 10

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

13

Analysis Domains Required

Averaging numbers
1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Proved safe?
I m // (i+1)
I m + l[i]

Searching for a loop invariant (l. 4)
Stateless domains: list content, list length

“Nominal type” abstraction
m : int i : int els(l) : Task

Numeric abstraction (polyhedra)
m ∈ [0,+∞)

els(l) ∈ [0, 20]

0 ≤ i < len(l) 5 ≤ len(l) ≤ 10

Conclusion

I Different domains dep
ending on the precisio

n

I Use of auxiliary variab
les (underlined)

13

Comparison of the type and value analyses [MOM20b]

Averaging numbers
1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Type analysis

I IndexError (l. 4)

I ZeroDivisionError (l. 5)
I NameError (l. 5)

Non-relational value analysis
IndexError (l. 5)

Relational value analysis
No alarm!

14

Comparison of the type and value analyses [MOM20b]

Averaging numbers
1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Type analysis

I IndexError (l. 4)
I ZeroDivisionError (l. 5)

I NameError (l. 5)

Non-relational value analysis
IndexError (l. 5)

Relational value analysis
No alarm!

14

Comparison of the type and value analyses [MOM20b]

Averaging numbers
1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Type analysis

I IndexError (l. 4)
I ZeroDivisionError (l. 5)
I NameError (l. 5)

Non-relational value analysis
IndexError (l. 5)

Relational value analysis
No alarm!

14

Comparison of the type and value analyses [MOM20b]

Averaging numbers
1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Type analysis

I IndexError (l. 4)
I ZeroDivisionError (l. 5)
I NameError (l. 5)

Non-relational value analysis
IndexError (l. 5)

Relational value analysis
No alarm!

14

Comparison of the type and value analyses [MOM20b]

Averaging numbers
1 def average(l):
2 m = 0
3 for i in range(len(l)):
4 m = m + l[i]
5 m = m // (i + 1)
6 return m
7
8 l = [randint(0, 20)
9 for i in range(randint(5, 10))]
10 m = average(l)

Type analysis

I IndexError (l. 4)
I ZeroDivisionError (l. 5)
I NameError (l. 5)

Non-relational value analysis
IndexError (l. 5)

Relational value analysis
No alarm!

14

Benchmarks

Name LOC
Type Analysis Non-relational Value Analysis

Time Mem.
Exceptions detected

Time Mem.
Exceptions detected

Type Index Key Type Index Key
nbody.py 157 1.5s 3MB 0 22 1 5.7s 9MB 0 1 1
scimark.py 416 1.4s 12MB 1 1 0 3.4s 27MB 1 0 0
richards.py 426 13s 112MB 1 4 0 17s 149MB 1 2 0
unpack_seq.py 458 8.3s 7MB 0 0 0 9.4s 6MB 0 0 0
go.py 461 27s 345MB 33 20 0 2.0m 1.4GB 33 20 0
hexiom.py 674 1.1m 525MB 0 46 3 4.7m 3.2GB 0 21 3
regex_v8.py 1792 23s 18MB 0 2053 0 1.3m 56MB 0 145 0
processInput.py 1417 10s 64MB 7 7 1 12s 85MB 7 4 1
choose.py 2562 1.1m 1.6GB 12 22 7 2.9m 3.7GB 12 13 7

Total 9294 4.0m 2.8GB 59 2214 12 13m 9.1GB 59 228 12

Heuristic packing and relational analyses

I Static packing, using function’s scope
I Rules out all 145 alarms of regex_v8.py (1792 LOC) at 2.5× cost

15

https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_scimark.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_unpack_sequence.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py

Benchmarks

Name LOC
Type Analysis Non-relational Value Analysis

Time Mem.
Exceptions detected

Time Mem.
Exceptions detected

Type Index Key Type Index Key
nbody.py 157 1.5s 3MB 0 22 1 5.7s 9MB 0 1 1
scimark.py 416 1.4s 12MB 1 1 0 3.4s 27MB 1 0 0
richards.py 426 13s 112MB 1 4 0 17s 149MB 1 2 0
unpack_seq.py 458 8.3s 7MB 0 0 0 9.4s 6MB 0 0 0
go.py 461 27s 345MB 33 20 0 2.0m 1.4GB 33 20 0
hexiom.py 674 1.1m 525MB 0 46 3 4.7m 3.2GB 0 21 3
regex_v8.py 1792 23s 18MB 0 2053 0 1.3m 56MB 0 145 0
processInput.py 1417 10s 64MB 7 7 1 12s 85MB 7 4 1
choose.py 2562 1.1m 1.6GB 12 22 7 2.9m 3.7GB 12 13 7

Total 9294 4.0m 2.8GB 59 2214 12 13m 9.1GB 59 228 12

Conclusion

The non-relational val
ue analysis

I does not remove false
type alarms

I significantly reduces in
dex errors

I is ' 3× costlier

Heuristic packing and relational analyses

I Static packing, using function’s scope
I Rules out all 145 alarms of regex_v8.py (1792 LOC) at 2.5× cost

15

https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_scimark.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_unpack_sequence.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py

Benchmarks

Name LOC
Type Analysis Non-relational Value Analysis

Time Mem.
Exceptions detected

Time Mem.
Exceptions detected

Type Index Key Type Index Key
nbody.py 157 1.5s 3MB 0 22 1 5.7s 9MB 0 1 1
scimark.py 416 1.4s 12MB 1 1 0 3.4s 27MB 1 0 0
richards.py 426 13s 112MB 1 4 0 17s 149MB 1 2 0
unpack_seq.py 458 8.3s 7MB 0 0 0 9.4s 6MB 0 0 0
go.py 461 27s 345MB 33 20 0 2.0m 1.4GB 33 20 0
hexiom.py 674 1.1m 525MB 0 46 3 4.7m 3.2GB 0 21 3
regex_v8.py 1792 23s 18MB 0 2053 0 1.3m 56MB 0 145 0
processInput.py 1417 10s 64MB 7 7 1 12s 85MB 7 4 1
choose.py 2562 1.1m 1.6GB 12 22 7 2.9m 3.7GB 12 13 7

Total 9294 4.0m 2.8GB 59 2214 12 13m 9.1GB 59 228 12

Conclusion

The non-relational val
ue analysis

I does not remove false
type alarms

I significantly reduces in
dex errors

I is ' 3× costlier

Heuristic packing and relational analyses

I Static packing, using function’s scope
I Rules out all 145 alarms of regex_v8.py (1792 LOC) at 2.5× cost

15

https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_nbody.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_scimark.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_richards.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_unpack_sequence.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_go.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_hexiom.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/processInput.py
https://github.com/facebook/PathPicker/blob/a2fdbb604ef76505ec81b6ef451e5f73d2685686/src/choose.py
https://github.com/python/pyperformance/blob/master/pyperformance/benchmarks/bm_regex_v8.py

Trusting Python programs

Our analysis can summarize

I Module imports
I Object creation
I Function calls
I Resource accesses (files, network, …)

16

Analyzing Python Programs with C Libraries

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)
I Garbage collection
I Less approaches to detect multi-language attacks [MBO22]

17

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)

I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)
I Garbage collection
I Less approaches to detect multi-language attacks [MBO22]

17

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)
I Garbage collection
I Less approaches to detect multi-language attacks [MBO22]

17

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)
I Garbage collection
I Less approaches to detect multi-language attacks [MBO22]

17

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)

I Different runtime-errors (exceptions in Python)
I Garbage collection
I Less approaches to detect multi-language attacks [MBO22]

17

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)

I Garbage collection
I Less approaches to detect multi-language attacks [MBO22]

17

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)
I Garbage collection

I Less approaches to detect multi-language attacks [MBO22]

17

Combining C and Python – motivation

One in five of the top 200 Python libraries contains C code

I To bring better performance (numpy)
I To provide library bindings (pygit2)

Pitfalls

I Different values (arbitrary-precision integers in Python, bounded in C)
I Different runtime-errors (exceptions in Python)
I Garbage collection
I Less approaches to detect multi-language attacks [MBO22]

17

Combining C and Python – example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

I power ≤ 30⇒ r = 2power

I power = 31⇒ r = −231

I 32 ≤ power ≤ 64: OverflowError:
signed integer is greater than maximum

I power ≥ 64: OverflowError:
Python int too large to convert to C long

18

Combining C and Python – example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

I power ≤ 30⇒ r = 2power

I power = 31⇒ r = −231

I 32 ≤ power ≤ 64: OverflowError:
signed integer is greater than maximum

I power ≥ 64: OverflowError:
Python int too large to convert to C long

18

Combining C and Python – example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

I power ≤ 30⇒ r = 2power

I power = 31⇒ r = −231

I 32 ≤ power ≤ 64: OverflowError:
signed integer is greater than maximum

I power ≥ 64: OverflowError:
Python int too large to convert to C long18

Combining C and Python – example

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

I power ≤ 30⇒ r = 2power

I power = 31⇒ r = −231

I 32 ≤ power ≤ 64: OverflowError:
signed integer is greater than maximum

I power ≥ 64: OverflowError:
Python int too large to convert to C long18

How to analyze multilanguage programs?

Type annotations
class Counter:
def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors
I Only types
I Typeshed: type annotations for the standard library

, used in the
single-language analysis before

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations
class Counter:
def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors

I Only types
I Typeshed: type annotations for the standard library

, used in the
single-language analysis before

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations
class Counter:
def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors
I Only types

I Typeshed: type annotations for the standard library

, used in the
single-language analysis before

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations
class Counter:
def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors
I Only types
I Typeshed: type annotations for the standard library

, used in the
single-language analysis before

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations
class Counter:
def __init__(self): ...
def incr(self, i: int = 1): ...
def get(self) -> int: ...

I No raised exceptions =⇒ missed errors
I Only types
I Typeshed: type annotations for the standard library, used in the
single-language analysis before

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code
class Counter:
def __init__(self):
self.count = 0

def get(self):
return self.count

def incr(self, i=1):
self.count += i

I No integer wrap-around in Python
I Some effects can’t be written in pure Python (e.g., read-only attributes)

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code
class Counter:
def __init__(self):
self.count = 0

def get(self):
return self.count

def incr(self, i=1):
self.count += i

I No integer wrap-around in Python

I Some effects can’t be written in pure Python (e.g., read-only attributes)

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code
class Counter:
def __init__(self):
self.count = 0

def get(self):
return self.count

def incr(self, i=1):
self.count += i

I No integer wrap-around in Python
I Some effects can’t be written in pure Python (e.g., read-only attributes)

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code

I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion

I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources

I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does

I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python

I Detect runtime errors in Python, in C, and at the boundary

19

How to analyze multilanguage programs?

Type annotations

Rewrite into Python code

Drawbacks of the current approaches

I Not the real code
I Not automatic: manual conversion
I Not sound: some effects are not taken into account

Our approach

I Analyze both the C and Python sources
I Switch from one language to the other just as the program does
I Reuse previous analyses of C and Python
I Detect runtime errors in Python, in C, and at the boundary 19

Analysis result

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

20

Analysis result

counter.c

1 typedef struct {
2 PyObject_HEAD;
3 int count;
4 } Counter;
5
6 static PyObject*
7 CounterIncr(Counter *self, PyObject *args)
8 {
9 int i = 1;
10 if(!PyArg_ParseTuple(args, "|i", &i))
11 return NULL;
12
13 self->count += i;
14 Py_RETURN_NONE;
15 }
16
17 static PyObject*
18 CounterGet(Counter *self)
19 {
20 return Py_BuildValue("i", self->count);
21 }

count.py

1 from counter import Counter
2 from random import randrange
3
4 c = Counter()
5 power = randrange(128)
6 c.incr(2**power-1)
7 c.incr()
8 r = c.get()

20

From distinct Python and C analyses...

to a multilanguage analysis!

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

×

Py.environment Py.attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

U.recency

×

U.intervals U.strings

Universal

C specific

Python specific

C.program # C.desugar # C.goto #

U.intraproc # U.loops # U.interproc #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.recency

◦

∧

U.intervals U.linearRel

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

21

From distinct Python and C analyses... to a multilanguage analysis!
CPython

×

Py.program # Py.desugar # Py.exceptions #

Py.libraries # Py.objects # Py.data_model #

×

Py.Environment Py.Attributes

◦

×

Py.lists Py.dictsPy.tuples

◦

C.program # C.desugar # C.goto #

C.stubs # C.libraries # C.files #

∧

C.cells C.strings

◦

×

C.machineNum C.pointers

◦

U.intraproc # U.loops # U.interproc #

U.recency

◦

U.intervals

Sequence

∧ Reduced product

× Cartesian product

◦ Composition

Universal

C specific

Python specific

21

Benchmarks

Corpus selection

I Popular, real-world libraries available on GitHub, averaging 412 stars.
I Whole-program analysis: we use the tests provided by the libraries.

Library C + Py. Loc Tests CLOCK/test # proved checks
checks % # checks

noise 1397 15/15 1.2s 99.7% (6690)
cdistance 2345 28/28 4.1s 98.0% (13716)
llist 4515 167/194 1.5s 98.8% (36255)
ahocorasick 4877 46/92 1.2s 96.7% (6722)
levenshtein 5798 17/17 5.3s 84.6% (4825)
bitarray 5841 159/216 1.6s 94.9% (25566)

22

https://github.com/caseman/noise
https://github.com/doukremt/distance
https://github.com/ajakubek/python-llist
https://github.com/WojciechMula/pyahocorasick
https://github.com/ztane/python-Levenshtein/
https://github.com/ilanschnell/bitarray

Trusting Python+C programs

Our analysis can summarize

I Function calls
I Resource accesses (files, network, …)

Made by either Python or C.

23

A Modern Program Analyzer: Mopsa

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

24

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

24

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

24

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)

I Can be used as an experimentation platform

24

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

24

gitlab.com/mopsa/mopsa-analyzer

Contributors (2018–2025, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.

25

Contributors (2018–2025, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.

25

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]

Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

26

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

26

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

26

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

26

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs

I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

26

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]

I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

26

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]

I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

26

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]

I Sufficient precondition inference [MM24]

26

Works around Mopsa

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]
Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23], Catala (date arithmetic [MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24]

26

Works around Mopsa – II

Software Verification Competition
We won the “SoftwareSystems” track of SV-Comp 2024 [Mon+24]!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score 27

Conclusion

Conclusion

Automated program analysis can help

understanding unknown programs

through semantic inference.

Python:
I dynamic types,
I complex semantics,
I native C code.

xkcd.com/303

28

xkcd.com/303

Conclusion

Automated program analysis can help

understanding unknown programs

through semantic inference.

Python:
I dynamic types,
I complex semantics,
I native C code.

xkcd.com/303

28

xkcd.com/303

Conclusion

Automated program analysis can help

understanding unknown programs

through semantic inference.

Python:
I dynamic types,
I complex semantics,
I native C code.

xkcd.com/303

28

xkcd.com/303

Conclusion

Automated program analysis can help

understanding unknown programs

through semantic inference.

Python:
I dynamic types,
I complex semantics,
I native C code.

xkcd.com/303 28

xkcd.com/303

Research Perspectives

Non-exploitability analysis from Parolini and Miné [PM24]

I Focus on alarms that users can trigger through program interaction

I Cooperation between taint and value analyses

Summarizing data accesses in Python-SQL programs
Ongoing work with Charles Paperman.

29

Research Perspectives

Non-exploitability analysis from Parolini and Miné [PM24]

I Focus on alarms that users can trigger through program interaction
I Cooperation between taint and value analyses

Summarizing data accesses in Python-SQL programs
Ongoing work with Charles Paperman.

29

Research Perspectives

Non-exploitability analysis from Parolini and Miné [PM24]

I Focus on alarms that users can trigger through program interaction
I Cooperation between taint and value analyses

Summarizing data accesses in Python-SQL programs
Ongoing work with Charles Paperman.

29

Research Perspectives

Non-exploitability analysis from Parolini and Miné [PM24]

I Focus on alarms that users can trigger through program interaction
I Cooperation between taint and value analyses

Summarizing data accesses in Python-SQL programs
Ongoing work with Charles Paperman.

29

How static programanalysis can help
trusting Python programs

Raphaël Monat – SyCoMoRES team

rmonat.fr

InCyber
3 March 2025

rmonat.fr

References – I

[Bal+19] Clément Ballabriga et al. “Static Analysis of Binary Code with Memory
Indirections Using Polyhedra”. In: Lecture Notes in Computer Science.
Springer, 2019, pp. 114–135.

[Bar+96] Kim Barrett et al. “A Monotonic Superclass Linearization for Dylan”.
In: 1996.

[Bau+22] Guillaume Bau et al. “Abstract interpretation of Michelson
smart-contracts”. In: ed. by Laure Gonnord and Laura Titolo. ACM, 2022,
pp. 36–43. doi: 10.1145/3520313.3534660.

[Ber+10] J. Bertrane et al. “Static analysis and verification of aerospace
software by abstract interpretation”. In: AIAA-2010-3385. 2010.

https://doi.org/10.1145/3520313.3534660

References – II

[CC77] P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints”. In: ACM, 1977, pp. 238–252.

[DM19] David Delmas and Antoine Miné. “Analysis of Software Patches Using
Numerical Abstract Interpretation”. In: ed. by Bor-Yuh Evan Chang.
Lecture Notes in Computer Science. Springer, 2019, pp. 225–246. doi:
10.1007/978-3-030-32304-2_12.

[DOM21] David Delmas, Abdelraouf Ouadjaout, and Antoine Miné. “Static
Analysis of Endian Portability by Abstract Interpretation”. In: Lecture
Notes in Computer Science. Springer, 2021, pp. 102–123.

https://doi.org/10.1007/978-3-030-32304-2_12

References – III

[JMO18] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout.
“Modular Static Analysis of String Manipulations in C Programs”. In:
ed. by Andreas Podelski. Lecture Notes in Computer Science. Springer, 2018,
pp. 243–262. doi: 10.1007/978-3-319-99725-4_16.

[Jou+19] M. Journault et al. “Combinations of reusable abstract domains for a
multilingual static analyzer”. In: New York, USA, July 2019, pp. 1–17.

[MBO22] Samuel Mergendahl, Nathan Burow, and Hamed Okhravi.
“Cross-Language Attacks”. In: The Internet Society, 2022.

https://doi.org/10.1007/978-3-319-99725-4_16

References – IV

[MFM24] Raphaël Monat, Aymeric Fromherz, and Denis Merigoux. “Formalizing
Date Arithmetic and Statically Detecting Ambiguities for the Law”. In:
ed. by Stephanie Weirich. Lecture Notes in Computer Science. Springer, 2024,
pp. 421–450. doi: 10.1007/978-3-031-57267-8_16.

[MM24] Marco Milanese and Antoine Miné. “Generation of Violation
Witnesses by Under-Approximating Abstract Interpretation”. In: ed. by
Rayna Dimitrova, Ori Lahav, and Sebastian Wolff. Lecture Notes in Computer
Science. Springer, 2024, pp. 50–73. doi: 10.1007/978-3-031-50524-9_3.

[MOM20a] R. Monat, A. Ouadjaout, and A. Miné. “Static Type Analysis by Abstract
Interpretation of Python Programs”. In: LIPIcs. 2020.

https://doi.org/10.1007/978-3-031-57267-8_16
https://doi.org/10.1007/978-3-031-50524-9_3

References – V

[MOM20b] R. Monat, A. Ouadjaout, and A. Miné. “Value and allocation sensitivity
in static Python analyses”. In: ACM, 2020, pp. 8–13. doi:
10.1145/3394451.3397205.

[MOM21] R. Monat, A. Ouadjaout, and A. Miné. “A Multilanguage Static Analysis
of Python Programs with Native C Extensions”. In: 2021.

[Mon+24] Raphaël Monat et al. “Mopsa-C: Improved Verification for C Programs,
Simple Validation of Correctness Witnesses (Competition
Contribution)”. In: Lecture Notes in Computer Science. Springer, 2024,
pp. 387–392.

https://doi.org/10.1145/3394451.3397205

References – VI

[OM20] A. Ouadjaout and A. Miné. “A Library Modeling Language for the
Static Analysis of C Programs”. In: ed. by David Pichardie and
Mihaela Sighireanu. Lecture Notes in Computer Science. Springer, 2020,
pp. 223–247. doi: 10.1007/978-3-030-65474-0_11.

[PM24] Francesco Parolini and Antoine Miné. “Sound Abstract
Nonexploitability Analysis”. In: Lecture Notes in Computer Science.
Springer, 2024, pp. 314–337.

[VMM23] Milla Valnet, Raphaël Monat, and Antoine Miné. “Analyse statique de
valeurs par interprétation abstraite de programmes fonctionnels
manipulant des types algébriques récursifs”. In: ed. by Timothy Bourke
and Delphine Demange. Praz-sur-Arly, France, Jan. 2023, pp. 211–242.

https://doi.org/10.1007/978-3-030-65474-0_11

	Introduction
	

	A Taste of Python
	

	Analyzing Python Programs
	

	Analyzing Python Programs with C Libraries
	

	A Modern Program Analyzer: Mopsa
	

	Conclusion
	

	Appendix
	References

