
Mopsa-C with Trace Partitioning and
Autosuggestions (Competition Contribution)

Raphaël Monat1(�)⋆ , Abdelraouf Ouadjaout2 , and Antoine Miné2

1 Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
2 LIP6, Sorbonne Université, F-75005, Paris, France

Abstract. We present advances we brought to Mopsa for SV-Comp
2025. Most notably, Mopsa now supports bounded trace partitioning,
constant widening with thresholds, and can check that all memory has
been correctly deallocated. Further, Mopsa now integrates a sound sup-
port of bitfields. While Mopsa at SV-Comp previously relied on a fixed,
homogeneous set of configurations to verify tasks, it can now automat-
ically leverage semantic information from a previous analysis to trig-
ger heuristic precision improvements in further analyses. With these im-
provements, Mopsa wins a silver medal in the SoftwareSystems category
and ranks fifth in the NoOverflows category.

Keywords: Static Analysis · Abstract Interpretation · Competition on
Software Verification · SV-Comp.

1 Verification Approach: the Mopsa platform

Mopsa is an open-source static analysis platform relying on abstract interpreta-
tion [9]. The implementation of Mopsa aims at exploring new perspectives for the
design of static analyzers. Journault et al. [13] describe the core of Mopsa prin-
ciples, and Monat [22, Chapter 3] provides an in-depth introduction to Mopsa’s
design. The C analysis which we rely on for this competition is based on the
work of Ouadjaout and Miné [27]; it proceeds by induction on the syntax, is
fully context- and flow-sensitive, and committed to be sound. This is the third
time Mopsa participates in SV-Comp [24, 23]. We have brought several enhance-
ments, including major precision improvements, described below.

Trace partitioning. Mopsa now supports a variant of trace partitioning [16].
Trace partitioning keeps some abstract states separate (depending on the analy-
sis trace) to improve precision. In our implementation, we keep a small, bounded
abstract trace to separate abstract states while maintaining full analysis cover-
age. The abstract trace consists in the k latest trace markers. Currently, trace
markers correspond to control conditions (if, switch, different return loca-
tions), and case disjunctions when handling C stubs [27].
⋆ Jury member

mailto:raphael.monat@inria.fr
https://orcid.org/0000-0001-8487-0326
https://orcid.org/0000-0001-7248-5914
https://orcid.org/0000-0002-6375-3179

2 R. Monat et al.

Widening with constant thresholds. Mopsa relies on the traditional ab-
stract interpretation use of widening [9] to enforce finite convergence when ana-
lyzing loops. However these widening operators may generalize some constraints
too quickly, which can be difficult to recover from. To address this issue, Mopsa
now supports the standard widening with thresholds [4]. It is implemented as a
plug-in, which observes the analyzer and performs some constant propagation
to decide relevant thresholds for each variable. This approach greatly improves
precision when analyzing loops guarded by (in)equalities.

Memory deallocation check. Mopsa can prove that programs have success-
fully deallocated all memory. During the end of the analysis of a program, it
queries the recency abstraction [2] to ensure that all memory dynamically allo-
cated through malloc and other glibc functions has been properly deallocated.
This allows us to support the MemCleanup property of SV-Comp (especially in
the corresponding uthash subcategory of SoftwareSystems).

Sound bitfield support. The low-level C memory representation of cells [20]
we use works at the byte level, making bitfield reasoning hard. We have thus
implemented a domain translating bitfield operations into equivalent byte-level
operations with bitmasks. This approach is currently sound, although imprecise.
The precision could be improved through new numeric abstractions in the future.

Other improvements. Mopsa leverages relational numeric domain through
Apron’s interface [12], relying on static packing [4] to remain scalable. In order
to improve precision for small and intricate programs, the last configuration used
in our SV-Comp driver (Section 2) does not rely on packing (i.e., all variables
are used in the same polyhedron). Noticing performance improvements in this
case, we decided to rely on the PPLite polyhedra implementation [3]. Mopsa
does not support the analysis of recursive functions. We added support to unroll
recursive functions of bounded depth.

2 Software Architecture: the SV-Comp driver
By default, the C analysis of Mopsa detects all the runtime errors that may hap-
pen in the analyzed program, while SV-Comp tasks focus on a specific property
at a time. We thus rely on an SV-Comp specific driver. It takes as input the
task description (program, property, data model). It sequentially tries increas-
ingly precise C analyses defined in Mopsa until the property of interest is proved
or the most precise analysis is reached (or the resources are exhausted). Each
analysis result is postprocessed by the driver to check if the property is proved.
An analysis configuration defines the set of domains used and their parameters,
allowing control of the precision-efficiency ratio. A breakdown of the results is
shown in Fig. 1. Similarly to last year [23], we use five configurations. Confs. 1
and 3 are unchanged from last year. Conf. 2 now only unrolls the first 2 iterations
of loops (down from 10 last year – but the precision suggestion hook mentioned
below can override this parameter). Conf. 4 adds the bounded trace partitioning,
where up to 7 trace markers can be kept. Conf. 5 also enables bounded trace
partitioning (with up to 10 trace markers), and relies on PPLite without static
packing for best precision.

Mopsa-C: Trace Partitioning and Autosuggestions 3

Max. Conf. Tasks proved correct Tasks reaching 900s timeout

1 7002 389
2 7743 (+741) 970 (+581)
3 8489 (+746) 3377 (+2407)
4 8660 (+171) 5378 (+2001)
5 8933 (+273) 8440 (+3062)

Fig. 1. Results of our sequential portfolio at SV-Comp 2025. Max. Conf. i represents
the sequence of increasingly precise analyses from Conf. 1 up to Conf. i. Max. Conf. 2
is able to prove 741 tasks correct in addition to the 7002 proved by Conf. 1, although
970 tasks reach the resource limits when analyzed by Conf. 1 and 2 (581 more than
by Conf. 1 alone). There are 33592 tasks in total, including 22356 correctness tasks.
Mopsa can only prove program correctness for now; it yields “unknown” when unable
to prove a program correct.

Heuristic Autosuggestions. An important improvement is that the set of
configurations is not fixed and uniform for all programs anymore. Each analysis
can suggest enabling options that will improve the precision of further analy-
ses. These options are decided by a plug-in observing the analysis of Mopsa. It
currently supports three semantic heuristics:
Bounded recursion unrolling. Upon detection of a call to a recursive func-

tion f having parameter n, if n lies in interval [0, hi], and hi < 1000, further
analyses will inline recursive functions up to bound hi.3

Loop unrolling for precise allocations. If the program contains a loop, for
which we can semantically infer that (i) there are less than 30 iterations and
that (ii) iterations perform allocations, further analyses will unroll this loop
to keep the allocated memory blocks distinct and enhance precision.

Single loop unrolling. If the program semantically reaches a single loop, for
which we can infer an upper bound on the number of iterations, further
analyses will fully unroll this loop.

3 Strengths and Weaknesses
Mopsa participated in the following categories, targeting C programs: Reach-
Safety, MemSafety, NoOverflows and SoftwareSystems. An overview of results
can be found in the competition report [5]. Figure 2 highlights the progress made
by Mopsa in specific subcategories, thanks to the improvements brought for this
year’s edition. Note that in two subcategories, the score of Mopsa decreased due
to our now-sound bitfield encoding.

Strengths. Mopsa is quite scalable: our cheapest configuration is able to ana-
lyze a given program within the allocated resource budget in 98.8% of the cases.
Thanks to this scalability, Mopsa is particularly competitive in the SoftwareSys-
tems track, focusing on verifying real software systems. This year, Mopsa ranked
3 In other cases, Mopsa relies on the function’s prototype to return the top value,

and assumes the recursive function has no side-effects. To keep this approach sound,
our SV-Comp driver thus returns unknown whenever a recursive function has been
encountered during the analysis.

4 R. Monat et al.

Category Prop. |tasks| Mopsa’24 Mopsa’25 Best score, verifier (2025)

Hardness R 4012 432 518 7426 SVF-SVC [17]
Heap R 240 190 226 314 PredatorHP [29]
Loops R 774 298 376 1031 AISE [34, 14]
Recursive R 160 12 60 150 UTaipan [10]

Heap M 247 40 154 331 PredatorHP [29]
Juliet M 3271 2224 2530 4709 CPAchecker [1]
LinkedLists M 134 58 96 220 PredatorHP [29]

Main N 1989 1920 2138 2756 UAutomizer [11]

AWS R 341 36 76 326 Bubaak [6, 8]
DDL R 2420 3476 3602 3602 Mopsa
uthash M 192 96 108 246 Bubaak* [6, 8, 7]
uthash N 162 204 300 300 Mopsa

Fig. 2. Mopsa’s improvements for selected subcategories of the ReachSafety, Mem-
Safety, NoOverflows and SoftwareSystems tracks, comparing the scores reached at
SV-Comp 2024 and 2025. Property is either ReachSafety, MemSafety or NoOverflow.
The last three columns show the score of Mopsa submitted last year, this year, and the
best score reached by a verifier.

second with 2164 points, closely trailing CPAchecker [1] with 2238 points. It is the
best verifier in the DeviceDriversLinux-ReachSafety and the uthash-NoOverflows
subcategories. In uthash-NoOverflows there are only two verifiers able to score
points; the second is UAutomizer [11], with 6 points. The second strength of
Mopsa lies in the NoOverflows track, where it ranked fifth, with results near
those of Goblint [30], which is the first abstract-interpretation based verifier to
enter the competition.

Weaknesses. Mopsa can only prove programs correct for now, and is currently
unable to provide counterexamples otherwise. We plan to leverage the recent
works of Milanese and Miné [18, 19] to address this issue. Mopsa does not sup-
port the termination property, and cannot precisely analyze concurrency-related
verification tasks, but we could leverage previous abstract interpretation work
targeting those properties [32, 31, 21, 33]. Our SV-Comp driver currently tries
a sequence of increasingly precise configurations: this approach is not efficient,
we are planning to develop techniques deciding what would be the best configu-
ration to analyze a given program, following the works of Oh et al. [26], Mansur
et al. [15], Wang et al. [35].

4 Software Project and Contributors
Mopsa is available on Gitlab [28], and released under an GNU LGPL v3 license.
Mopsa was originally developed at LIP6, Sorbonne Université following an ERC
Consolidator Grant award to Antoine Miné. Mopsa is now additionally developed
in other places, including Inria, ENS, Airbus and Nomadic Labs. The people who
improved Mopsa for SV-Comp 2025 are the authors of this paper.

Data-Availability Statement. The exact version of Mopsa and the driver
that participated in SV-Comp 2025 are available as a Zenodo archive [25].

Mopsa-C: Trace Partitioning and Autosuggestions 5

Bibliography

[1] Baier, D., Beyer, D., Chien, P., Jankola, M., Kettl, M., Lee, N., Lemberger,
T., Rosenfeld, M.L., Spiessl, M., Wachowitz, H., Wendler, P.: Cpachecker 2.3
with strategy selection - (competition contribution). In: TACAS (3), Lecture
Notes in Computer Science, vol. 14572, pp. 359–364, Springer (2024)

[2] Balakrishnan, G., Reps, T.W.: Recency-abstraction for heap-allocated stor-
age. In: SAS, Lecture Notes in Computer Science, vol. 4134, pp. 221–239,
Springer (2006)

[3] Becchi, A., Zaffanella, E.: Pplite: Zero-overhead encoding of NNC polyhe-
dra. Inf. Comput. 275, 104620 (2020)

[4] Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Rival, X.: Static analysis and verification of aerospace software by abstract
interpretation. Foundations and Trends in Programming Languages pp. 71–
190 (2015)

[5] Beyer, D., Strejček, J.: Improvements in software verification and witness
validation: SV-COMP 2025. In: Proc. TACAS, LNCS, Springer (2025)

[6] Chalupa, M., Henzinger, T.A.: Bubaak: Runtime monitoring of program
verifiers - (competition contribution). In: TACAS (2), Lecture Notes in
Computer Science, vol. 13994, pp. 535–540, Springer (2023)

[7] Chalupa, M., Richter, C.: Bubaak-split: Split what you cannot verify (com-
petition contribution). In: TACAS (3), Lecture Notes in Computer Science,
vol. 14572, pp. 353–358, Springer (2024)

[8] Chalupa, M., Richter, C.: Bubaak: Dynamic cooperative verification (com-
petition contribution). In: Proc. TACAS, LNCS, Springer (2025)

[9] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints.
In: POPL, pp. 238–252 (1977)

[10] Dietsch, D., Heizmann, M., Klumpp, D., Schüssele, F., Podelski, A.: Ulti-
mate taipan and race detection in ultimate - (competition contribution). In:
TACAS (2), Lecture Notes in Computer Science, vol. 13994, pp. 582–587,
Springer (2023)

[11] Heizmann, M., Barth, M., Dietsch, D., Fichtner, L., Hoenicke, J., Klumpp,
D., Naouar, M., Schindler, T., Schüssele, F., Podelski, A.: Ultimate au-
tomizer and the commuhash normal form - (competition contribution). In:
TACAS (2), Lecture Notes in Computer Science, vol. 13994, pp. 577–581,
Springer (2023)

[12] Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for
static analysis. In: CAV, pp. 661–667, Springer (2009)

[13] Journault, M., Miné, A., Monat, R., Ouadjaout, A.: Combinations of
reusable abstract domains for a multilingual static analyzer. In: VSTTE,
pp. 1–18 (2019)

[14] Lin, Y., Chen, Z., Wang, J.: AISE v2.0: Combining loop transformations
(competition contribution). In: Proc. TACAS, LNCS, Springer (2025)

[15] Mansur, M.N., Mariano, B., Christakis, M., Navas, J.A., Wüstholz, V.:
Automatically tailoring abstract interpretation to custom usage scenarios.

6 R. Monat et al.

In: CAV (2), Lecture Notes in Computer Science, vol. 12760, pp. 777–800,
Springer (2021)

[16] Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation
based static analyzers. In: ESOP, Lecture Notes in Computer Science, vol.
3444, pp. 5–20, Springer (2005)

[17] McGowan, C., Richards, M., Sui, Y.: SVF-SVC: Software verification using
SVF (competition contribution). In: Proc. TACAS, LNCS, Springer (2025)

[18] Milanese, M., Miné, A.: Generation of Violation Witnesses by Under-
Approximating Abstract Interpretation. In: VMCAI, Springer (2024)

[19] Milanese, M., Miné, A.: Under-approximating memory abstractions. In:
Proc. of the 31th International Static Analysis Symposium (SAS’24), Lec-
ture Notes in Computer Science (LNCS), vol. 14995, Springer (Oct 2024),
http://www-apr.lip6.fr/~mine/publi/article-milanese-al-sas24.
pdf

[20] Miné, A.: Field-sensitive value analysis of embedded C programs with union
types and pointer arithmetics. In: LCTES (2006)

[21] Miné, A.: Relational thread-modular static value analysis by abstract inter-
pretation. In: VMCAI, Lecture Notes in Computer Science, vol. 8318, pp.
39–58, Springer (2014)

[22] Monat, R.: Static Type and Value Analysis by Abstract Interpretation of
Python Programs with Native C Libraries. Ph.D. thesis, Sorbonne Univer-
sité, France (2021)

[23] Monat, R., Milanese, M., Parolini, F., Boillot, J., Ouadjaout, A., Miné,
A.: Mopsa-c: Improved verification for C programs, simple validation of
correctness witnesses (competition contribution). In: TACAS (3), Lecture
Notes in Computer Science, vol. 14572, pp. 387–392, Springer (2024)

[24] Monat, R., Ouadjaout, A., Miné, A.: Mopsa-c: Modular domains and re-
lational abstract interpretation for C programs (competition contribution).
In: TACAS (2), Lecture Notes in Computer Science, vol. 13994, pp. 565–570,
Springer (2023)

[25] Monat, R., Ouadjaout, A., Miné, A.: Mopsa at sv-comp 2025 (Nov 2024),
https://doi.org/10.5281/zenodo.14208644

[26] Oh, H., Lee, W., Heo, K., Yang, H., Yi, K.: Selective context-sensitivity
guided by impact pre-analysis. In: PLDI, pp. 475–484, ACM (2014)

[27] Ouadjaout, A., Miné, A.: A library modeling language for the static analysis
of C programs. In: SAS, pp. 223–247 (2020)

[28] Ouadjaout, A., Monat, R., Miné, A., Journault, M.: Mopsa (2022), URL
https://gitlab.com/mopsa/mopsa-analyzer

[29] Peringer, P., Soková, V., Vojnar, T.: Predatorhp revamped (not only) for
interval-sized memory regions and memory reallocation (competition con-
tribution). In: TACAS (2), Lecture Notes in Computer Science, vol. 12079,
pp. 408–412, Springer (2020)

[30] Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler, R., Vojdani,
V.: Goblint: Thread-modular abstract interpretation using side-effecting
constraints - (competition contribution). In: TACAS (2021)

http://www-apr.lip6.fr/~mine/publi/article-milanese-al-sas24.pdf
http://www-apr.lip6.fr/~mine/publi/article-milanese-al-sas24.pdf
https://doi.org/10.5281/zenodo.14208644
https://doi.org/10.5281/zenodo.14208644
https://gitlab.com/mopsa/mopsa-analyzer

Mopsa-C: Trace Partitioning and Autosuggestions 7

[31] Urban, C.: Function: An abstract domain functor for termination - (compe-
tition contribution). In: TACAS, Lecture Notes in Computer Science, vol.
9035, pp. 464–466, Springer (2015)

[32] Urban, C., Miné, A.: A decision tree abstract domain for proving conditional
termination. In: SAS, Lecture Notes in Computer Science, vol. 8723, pp.
302–318, Springer (2014)

[33] Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static
race detection for device drivers: the goblint approach. In: ASE, pp. 391–
402, ACM (2016)

[34] Wang, Z., Chen, Z.: AISE: A symbolic verifier by synergizing abstract inter-
pretation and symbolic execution (competition contribution). In: TACAS
(3), Lecture Notes in Computer Science, vol. 14572, pp. 347–352, Springer
(2024)

[35] Wang, Z., Yang, L., Chen, M., Bu, Y., Li, Z., Wang, Q., Qin, S., Yi, X.,
Yin, J.: Parf: Adaptive parameter refining for abstract interpretation. In:
ASE, pp. 1082–1093 (2024)

This work is licensed under a Creative Commons “Attribution
4.0 International” license.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

	Mopsa-C with Trace Partitioning and Autosuggestions (Competition Contribution)

