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Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up
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Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Sound
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Advancing the state-of-the-art

How to evaluate, compare and improve automated program verification?

What about an academic competition?

SV-Comp since 2012, introduced by Dirk Beyer (LMU).
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Mopsa Overview



Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform
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Contributors (2018–2025, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.
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Mopsa design

Analysis = composition of abstract domains

unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

# Switch

∧ Reduced product

◦ Composition
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Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]

Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]
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SV-Comp



Presentation of SV-Comp

Software-Verification Competition

I Yearly, since 2012

I Part of ETAPS
I Organized by Dirk Beyer (Munich) + Jan Strejček (since 2025)
I 62 participating tools in 2025
I Initially for model checkers
Abstract interpreters dabbling since 2021 (Goblint)

I Rewards “incremental improvements” (software dev./maintenance)
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Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property

I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race
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Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons
I BusyBox (coreutils alternative)
I Coreutils

I Linux Device Drivers
I OpenBSD
I uthash
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SV-Comp’s Scoring System

︸ ︷︷ ︸
verdict

Remarks
I community-based curation of verdicts
I 187 manual fixes in 2023, 20 fixes in 2024...
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SV-Comp’s Scoring System (II)

Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

overall score ∝
∑

s∈subCategory

raw score in s
# tasks in s

You may have a high raw score but not so good overall score.
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SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost

I Improve interoperability between verifiers?

Witnesses
Programs annotated with loop invariants

Issues (in my opinion)

I Inlining-based analysis vs context-free program annotations [Saa20]
I Cross-validator scores can be low [Bey+22] – 45%
I Until 2025, time(program verification) = time(witness validation)
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Competitive Mopsa?



Adapting Mopsa to SV-Comp’s Framework

Differing workflows
Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

A “sequential portfolio” approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe
• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.
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Our 2025 sequential portfolio

Roughly:

1 Interval analysis without loop unrolling

2 Add string-length domain, loop unrolling of 2, various unrolling heuristics
3 Add relational analysis (with packing), loop unrolling of 15
4 Add trace partitioning, loop unrolling of 60
5 Fully relational analysis (no packing),

PPLite Polyhedra instead of Apron’s default.

+ Some task-specific heuristic autosuggestions.
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Global results per configuration

Max. Conf. Tasks proved correct Tasks reaching 900s timeout

1 7002 389

2 7743 (+741) 970 (+581)
3 8489 (+746) 3377 (+2407)
4 8660 (+171) 5378 (+2001)
5 8933 (+273) 8440 (+3062)
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Results

I 2023: 3rd in SoftwareSystems.
Category winner has been participating for 10 years!

I 2024: 1st in SoftwareSystems.
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I 2025: 2nd in SoftwareSystems.
Trying to improve ranking in NoOverflows category (no luck!).
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But, why?

I Community

I Gamified side
I Allocate time to improve Mopsa’s precision
I “What do you win?”

• A piece of wood!
• Some visibility?
• Mopsa supports de facto benchmarks
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Improvements made in 2025

I Heuristic Autosuggestions

• Bounded recursion unrolling
• Loop unrolling for precise allocations
• Single loop in program unrolling

I Trace partitioning
I Widening with thresholds
I Memory deallocation
I Sound bitfield support
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Our 2025 improvements

Category Prop. |tasks| Mopsa’24 Mopsa’25 Best score, verifier (2025)

Hardness R 4012 432 518 7426 SVF-SVC [CMY25]
Heap R 240 190 226 314 PredatorHP [PSV20]
Loops R 774 298 376 1031 AISE [WC24; YZJ25]
Recursive R 160 12 60 150 UTaipan [Die+23]

Heap M 247 40 154 331 PredatorHP [PSV20]
Juliet M 3271 2224 2530 4709 CPAchecker [Bai+24]
LinkedLists M 134 58 96 220 PredatorHP [PSV20]

Main N 1989 1920 2138 2756 UAutomizer [Hei+23]

AWS R 341 36 76 326 Bubaak [CH23; MC25]
DDL R 2420 3476 3602 3602 Mopsa
uthash M 192 96 108 246 Bubaak* [CH23; MC25; CR24]
uthash N 162 204 300 300 Mopsa
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Strengths & Weaknesses

Strengths

I Scalability, esp. SoftwareSystems category

I Progress on NoOverflows (Ultimate family difficult to beat!)
I Sound analysis contesting some verdicts

Weaknesses

I Sequential portfolio could leverage incremental approaches
I Do we really need sequential portfolio?
I Verifying a single property vs all RTEs
I Unable to provide counterexamples yet

ongoing work by Marco [MM24a; MM24b]
I Fixed sequence of configurations
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Conclusion



Conclusion

I Participation during Fall of 2023, 2024 and 2025.
I Mopsa is competitive!
I Raises interesting longer-term research questions (ANR RAISIN)
Beyond Termination: Resource-Aware Static Analyses?

I Exclamation-Triangle benchmark bias, scalability AnalyzeThat workshop?
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