Raphael Monat

rmonat.fr

APR a Lille
2 June 2025

rmonat.fr

Target program

Target program

Program analyzer

Target program

Program analyzer

Target program

Program analyzer

[

Target program

Program analyzer

v
?

/

Sound All errors in program
reported by analyzer

All errors reported ~ Complete Sound All errors in program
by analyzer are reported by analyzer
replicable in program

Guaranteed Termination

All errors reported ~ Complete Sound All errors in program
by analyzer are reported by analyzer
replicable in program

Guaranteed Termination

All errors reported \ Complete All errors in program
by analyzer are reported by analyzer
replicable in program

Guaranteed Termination

All errors reported
by analyzer are
replicable in program

Complete All errors in program

reported by analyzer

Guaranteed Termination

All errors reported
by analyzer are
replicable in program

Complete All errors in program

reported by analyzer

How to evaluate, compare and improve automated program verification?
What about an academic competition?

SV-Comp since 2012, introduced by Dirk Beyer (LMU).

[Mopsa Overview

2] sv-Comp

3] Competitive Mopsa?

[4] Conclusion

Mopsa Overview

e Modular Open Platform for Static Analysis [Jou+19]

gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis [Jou+19]

gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis [Jou+19]

gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis [Jou+19]

gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

gitlab.com/mopsa/mopsa-analyzer

. Modular Open Platform for Static Analysis [Jou+19]

gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

gitlab.com/mopsa/mopsa-analyzer

» A Miné

» A. Ouadjaout
» M. Journault
» A. Fromherz

» D. Delmas » M. Milanese
» R. Monat » M. Valnet
» G. Bau » . Boillot

» F. Parolini

» A. Miné

» A. Ouadjaout
» M. Journault
» A. Fromherz

Maintainers in bold.

» D. Delmas
» R. Monat
» G. Bau

» F. Parolini

» M. Milanese
» M. Valnet
» J. Boillot

Analysis = composition of abstract domains

Analysis = composition of abstract domains

unified domain signature = iterators are abstract domains

Analysis = composition of abstract domains

unified domain signature = iterators are abstract domains

» flexible architecture suitable for
various programming paradigms

Analysis = composition of abstract domains

unified domain signature = iterators are abstract domains

» flexible architecture suitable for
various programming paradigms

» separation of concerns

Analysis = composition of abstract domains

unified domain signature = iterators are abstract domains

» flexible architecture suitable for
various programming paradigms

» separation of concerns

» allows reuse of domains across
languages

Analysis = composition of abstract domains

unified domain signature = iterators are abstract domains

» flexible architecture suitable for
various programming paradigms

» separation of concerns

» allows reuse of domains across
languages

» defined as json files in
share/mopsa/configs

Analysis = composition of abstract domains

unified domain signature = iterators are abstract domains

flexible architecture suitable for
various programming paradigms

separation of concerns

allows reuse of domains across
languages

defined as json files in
share/mopsa/configs

Quniversal
OCspeciic (
@Python specific

s (i)

Switch
@ Reduced product

0,
° @ Composition
©)

C [JMO18; OM20], Python [MOM20a; MOM20b]

C [JM018; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

C [JM018; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23:; VMM25], Catala (date arithmetic
[MFM24])...

C [JM018; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23:; VMM25], Catala (date arithmetic
[MFM24])...

C [JM018; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23:; VMM25], Catala (date arithmetic
[MFM24])...

» Absence of RTEs

C [JM018; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23:; VMM25], Catala (date arithmetic
[MFM24])...

» Absence of RTEs
» Patch analysis [DM19]

C [JM018; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23:; VMM25], Catala (date arithmetic
[MFM24])...

» Absence of RTEs
» Patch analysis [DM19]
» Endianness portability [DOM21]

C [JM018; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23:; VMM25], Catala (date arithmetic
[MFM24])...

» Absence of RTEs

» Patch analysis [DM19]

» Endianness portability [DOM21]
» Non-exploitability [PM24]

Languages
C [JIMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23:; VMM25], Catala (date arithmetic
[MFM24])...

Properties

» Absence of RTEs

» Patch analysis [DM19]

» Endianness portability [DOM21]

» Non-exploitability [PM24]

» Sufficient precondition inference [MM24a; MM24b]

SV-Comp

Software-Verification Competition

» Yearly, since 2012

Software-Verification Competition

» Yearly, since 2012
» Part of ETAPS

Software-Verification Competition

» Yearly, since 2012
» Part of ETAPS
» Organized by Dirk Beyer (Munich) + Jan Strejcek (since 2025)

Software-Verification Competition

» Yearly, since 2012

» Part of ETAPS

» Organized by Dirk Beyer (Munich) + Jan Strejcek (since 2025)
» 62 participating tools in 2025

Software-Verification Competition

» Yearly, since 2012

» Part of ETAPS

» Organized by Dirk Beyer (Munich) + Jan Strejcek (since 2025)
» 62 participating tools in 2025

>

Initially for model checkers
Abstract interpreters dabbling since 2021 (Goblint)

Software-Verification Competition

Yearly, since 2012

Part of ETAPS

Organized by Dirk Beyer (Munich) + Jan Strejcek (since 2025)
62 participating tools in 2025

vV v vVvyy

Initially for model checkers
Abstract interpreters dabbling since 2021 (Goblint)

» Rewards “incremental improvements” (software dev./maintenance)

10

10

10

10

10

» Preprocessed C programs

10

» Preprocessed C programs
» Lots of handcrafted or small examples

10

» Preprocessed C programs

» Lots of handcrafted or small examples
» “SoftwareSystems” category, more realistic

10

» Preprocessed C programs
» Lots of handcrafted or small examples

» “SoftwareSystems” category, more realistic
» Community-curated, including oracle verdicts

10

» Preprocessed C programs

» Lots of handcrafted or small examples
» “SoftwareSystems” category, more realistic
» Community-curated, including oracle verdicts

10

- -

» Preprocessed C programs

» Lots of handcrafted or small examples
» “SoftwareSystems” category, more realistic
» Community-curated, including oracle verdicts

10

» Reachability
» Memory safety

» Preprocessed C programs

» Lots of handcrafted or small examples
» “SoftwareSystems” category, more realistic
» Community-curated, including oracle verdicts

10

» Reachability
» Memory safety
» Integer overflows

» Preprocessed C programs

» Lots of handcrafted or small examples
» “SoftwareSystems” category, more realistic
» Community-curated, including oracle verdicts

10

» Reachability
» Memory safety
» Integer overflows

» Termination

» Preprocessed C programs

» Lots of handcrafted or small examples
» “SoftwareSystems” category, more realistic
» Community-curated, including oracle verdicts

10

» Reachability

» Memory safety
» Integer overflows
» Termination

» Preprocessed C programs

» Lots of handcrafted or small examples
» “SoftwareSystems” category, more realistic
» Community-curated, including oracle verdicts

10

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

11

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

» AWS C commons

11

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems
» AWS C commons

» BusyBox (coreutils alternative)

11

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems
» AWS C commons
» BusyBox (coreutils alternative)
» Coreutils

11

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems
» AWS C commons » Linux Device Drivers
» BusyBox (coreutils alternative)
» Coreutils

11

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

» AWS C commons » Linux Device Drivers
» BusyBox (coreutils alternative) » OpenBSD
» Coreutils

11

Category # tasks Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

» AWS C commons » Linux Device Drivers
» BusyBox (coreutils alternative) » OpenBSD
» Coreutils » uthash

11

true (witness confirmed)

unconfirmed (false, unknown, or resources exhausted)'

invalid (error in witness syntax)

WITNESS_VALIDATOR

VERIFIER

true-unreach

false-unreach

VERIFIER

unknown

invalid (error in witness syntax)

WITNESS VALIDATOR [unconfirmed (true, unknown, or resources exhausted) .

false (witness confirmed)

true (witness confirmed)

unconfirmed (false, unknown, or resources exhausted)'

invalid (error in witness syntax)

WITNESS_VALIDATOR

VERIFIER

true-unreach

false-unreach

VERIFIER

unknown

—_———

. invalid (error in witness syntax
verdict ¢ yntax)

WITNESS VALIDATOR [unconfirmed (true, unknown, or resources exhausted) .

false (witness confirmed)

true (witness confirmed)

unconfirmed (false, unknown, or resources exhausted)'

invalid (error in witness syntax)

WITNESS_VALIDATOR

VERIFIER

true-unreach

false-unreach

VERIFIER unknown

—_———

. invalid (error in witness syntax
verdict ¢ yntax)

WITNESS VALIDATOR [unconfirmed (true, unknown, or resources exhausted) .

Remarks false (witness confirmed)
» community-based curation of verdicts

» 187 manual fixes in 2023, 20 fixes in 2024... 1

Categories are divided into subcategories (a family of benchmarks).

13

Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

raw scorein s
overall score Z 2

tasksins
sesubCategory

13

Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

raw scorein s
overall score Z 2

tasksins
sesubCategory

You may have a high raw score but not so good overall score.

13

14

14

Programs annotated with loop invariants

14

Programs annotated with loop invariants

Programs annotated with loop invariants

Programs annotated with loop invariants

Programs annotated with loop invariants

» Inlining-based analysis vs context-free program annotations [Saa20]

» Cross-validator scores can be low [Bey+22] - 45%
» Until 2025, time(program verification) = time(witness validation)

14

Competitive Mopsa?

15

Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

[Analyze the target program with Mopsa

15

Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

1| Analyze the target program with Mopsa
12 Postprocess Mopsa'’s result to decide whether the property of interest holds

15

Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

1| Analyze the target program with Mopsa
12 Postprocess Mopsa'’s result to decide whether the property of interest holds
e Yes? finished, program is safe

15

Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

1| Analyze the target program with Mopsa
12 Postprocess Mopsa'’s result to decide whether the property of interest holds

e Yes? finished, program is safe
e No? restart with a more precise analysis configuration

15

Differing workflows
Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

A “sequential portfolio” approach

1| Analyze the target program with Mopsa
12 Postprocess Mopsa'’s result to decide whether the property of interest holds

e Yes? finished, program is safe
e No? restart with a more precise analysis configuration

~» Mopsa returns unknown or times out when a property is not verified.

15

Roughly:

[l Interval analysis without loop unrolling

16

Roughly:

[l Interval analysis without loop unrolling

21 Add string-length domain, loop unrolling of 2, various unrolling heuristics

16

Roughly:

[l Interval analysis without loop unrolling
21 Add string-length domain, loop unrolling of 2, various unrolling heuristics
Bl Add relational analysis (with packing), loop unrolling of 15

16

Roughly:

[l Interval analysis without loop unrolling

21 Add string-length domain, loop unrolling of 2, various unrolling heuristics
Bl Add relational analysis (with packing), loop unrolling of 15

4 Add trace partitioning, loop unrolling of 60

16

Roughly:
[l Interval analysis without loop unrolling
21 Add string-length domain, loop unrolling of 2, various unrolling heuristics
Bl Add relational analysis (with packing), loop unrolling of 15
4 Add trace partitioning, loop unrolling of 60

I8 Fully relational analysis (no packing),
PPLite Polyhedra instead of Apron’s default.

16

Roughly:
[l Interval analysis without loop unrolling
21 Add string-length domain, loop unrolling of 2, various unrolling heuristics
Bl Add relational analysis (with packing), loop unrolling of 15
4 Add trace partitioning, loop unrolling of 60
I8 Fully relational analysis (no packing),
PPLite Polyhedra instead of Apron’s default.

+ Some task-specific heuristic autosuggestions.

16

Max. Conf. Tasks proved correct Tasks reaching 900s timeout

1 7002 389

17

Max. Conf. Tasks proved correct Tasks reaching 900s timeout

1 7002 389
2 7743 (+741) 970 (+581)

17

Max. Conf. Tasks proved correct Tasks reaching 900s timeout

1 7002 389
2 7743 (+741) 970 (+581)
3 8489 (+746) 3377 (+2407)

17

Max. Conf. Tasks proved correct

Tasks reaching 900s timeout

S~ W N

7002
7743
8489
8660

(+741)
(+746)
(+171)

389

970 (+581)
3377 (+2407)
5378 (+2001)

17

Max. Conf. Tasks proved correct Tasks reaching 900s timeout

1 7002 389

2 7743 (+741) 970 (+581)
3 8489 (+746) 3377 (+2407)
4 8660 (+171) 5378 (+2001)
5 8933 (+273) 8440 (+3062)

17

» 2023: 3rd in SoftwareSystems.
Category winner has been participating for 10 years!

18

» 2023: 3rd in SoftwareSystems.
Category winner has been participating for 10 years!
» 2024: 1st in SoftwareSystems.

18

» 2023: 3rd in SoftwareSystems.
Category winner has been participating for 10 years!
» 2024: 1st in SoftwareSystems.

» 2025: 2nd in SoftwareSystems.
Trying to improve ranking in NoOverflows category (no luck!). 18

» Community

19

» Community
» Gamified side

19

» Community
» Gamified side

» Allocate time to improve Mopsa’s precision

19

» Community
» Gamified side

» Allocate time to improve Mopsa’s precision
» “What do you win?”

19

» Community
» Gamified side

» Allocate time to improve Mopsa’s precision
» “What do you win?”
o A piece of wood!

19

» Community

» Gamified side | V'COMP&EO%‘?W
» Allocate time to improve Mopsa’s precision ‘ :"co“m'"é'e"w‘“’wndwm

» “What do you win?”

o A piece of wood!
o Some visibility?

19

» Community

» Gamified side | V'COMP&EO%‘?W
» Allocate time to improve Mopsa’s precision ‘ :"co“m'"é'e"w‘“’wndwm

» “What do you win?”
o A piece of wood!
e Some visibility?
e Mopsa supports de facto benchmarks

19

» Heuristic Autosuggestions

20

» Heuristic Autosuggestions
e Bounded recursion unrolling

20

» Heuristic Autosuggestions

e Bounded recursion unrolling
o Loop unrolling for precise allocations

20

» Heuristic Autosuggestions

e Bounded recursion unrolling
o Loop unrolling for precise allocations
o Single loop in program unrolling

20

» Heuristic Autosuggestions

e Bounded recursion unrolling
o Loop unrolling for precise allocations
o Single loop in program unrolling

» Trace partitioning

20

» Heuristic Autosuggestions

e Bounded recursion unrolling
o Loop unrolling for precise allocations
o Single loop in program unrolling

» Trace partitioning
» Widening with thresholds

20

» Heuristic Autosuggestions

e Bounded recursion unrolling
o Loop unrolling for precise allocations
o Single loop in program unrolling

» Trace partitioning
» Widening with thresholds

» Memory deallocation

20

» Heuristic Autosuggestions

e Bounded recursion unrolling
o Loop unrolling for precise allocations
o Single loop in program unrolling

» Trace partitioning

» Widening with thresholds
» Memory deallocation

» Sound bitfield support

20

Category Prop. [tasks| Mopsa’24 Mopsa'25 Best score, verifier (2025)

Hardness R 4012 432 518 7426 SVF-SVC [CMY25]
Heap R 240 190 226 314 PredatorHP [PSV20]
Loops R 774 298 376 1031 AISE [WC24; YZJ25]
Recursive R 160 12 60 150 UTaipan [Die+23]
Heap M 247 40 154 331 PredatorHP [PSV20]
Juliet M 3271 2224 2530 4709 CPAchecker [Bai+24]
LinkedLists M 134 58 96 220 PredatorHP [PSV20]
Main N 1989 1920 2138 2756 UAutomizer [Hei+23]
AWS R 341 36 76 326 Bubaak [CH23; MC25]
DDL R 2420 3476 3602 3602 Mopsa

uthash M 192 96 108 246 Bubaak* [CH23; MC25; CR24]
uthash N 162 204 300 300 Mopsa

21

22

22

22

» Scalability, esp. SoftwareSystems category

» Progress on NoOverflows (Ultimate family difficult to beat!)

» Sound analysis ~» contesting some verdicts

Weaknesses

22

» Scalability, esp. SoftwareSystems category

» Progress on NoOverflows (Ultimate family difficult to beat!)

» Sound analysis ~» contesting some verdicts

Weaknesses

» Sequential portfolio could leverage incremental approaches

22

» Scalability, esp. SoftwareSystems category

» Progress on NoOverflows (Ultimate family difficult to beat!)

» Sound analysis ~» contesting some verdicts

Weaknesses
» Sequential portfolio could leverage incremental approaches

» Do we really need sequential portfolio?

22

» Scalability, esp. SoftwareSystems category

» Progress on NoOverflows (Ultimate family difficult to beat!)

» Sound analysis ~» contesting some verdicts

Weaknesses
» Sequential portfolio could leverage incremental approaches
» Do we really need sequential portfolio?
» Verifying a single property vs all RTEs

22

» Scalability, esp. SoftwareSystems category

» Progress on NoOverflows (Ultimate family difficult to beat!)
» Sound analysis ~» contesting some verdicts

Weaknesses
» Sequential portfolio could leverage incremental approaches
» Do we really need sequential portfolio?
» Verifying a single property vs all RTEs

» Unable to provide counterexamples yet
ongoing work by Marco [MM24a; MM24b]

22

» Scalability, esp. SoftwareSystems category

» Progress on NoOverflows (Ultimate family difficult to beat!)
» Sound analysis ~» contesting some verdicts

Weaknesses
» Sequential portfolio could leverage incremental approaches
» Do we really need sequential portfolio?
» Verifying a single property vs all RTEs

» Unable to provide counterexamples yet
ongoing work by Marco [MM24a; MM24b]

» Fixed sequence of configurations

22

Conclusion

» Participation during Fall of 2023, 2024 and 2025.
» Mopsa is competitive!

» Raises interesting longer-term research questions (ANR RAISIN)
Beyond Termination: Resource-Aware Static Analyses?

» A benchmark bias, scalability AnalyzeThat workshop?

23

[Bai+24]

[Bau+22]

[Bey+22]

Daniel Baier et al. “CPAchecker 2.3 with Strategy Selection -
(Competition Contribution)”. 1= Lecture Notes in Computer Science.
Springer, 2024, pp. 359-364.

Guillaume Bau et al. “Abstract interpretation of Michelson
smart-contracts”. \n: ed. by Laure Gonnord and Laura Titolo. ACM, 2022,
pp. 36-43. DOI: 10.1145/3520313.3534660.

Dirk Beyer et al. “Verification Witnesses”. I11:
ACM Trans. Softw. Eng. Methodol. 4 (2022), 57:1-57:69.

https://doi.org/10.1145/3520313.3534660

[CH23]

[CMY25]

[CR24]

[Die+23]

Marek Chalupa and Thomas A. Henzinger. “Bubaak: Runtime
Monitoring of Program Verifiers - (Competition Contribution)”. i1
Lecture Notes in Computer Science. Springer, 2023, pp. 535-540.

C. McGowan, M. Richards, and Y. Sul. “SVF-SVC: Software Verification
Using SVF (Competition Contribution)”. in: LNCS Springer 2025,

Marek Chalupa and Cedric Richter. “Bubaak-SpLit: Split what you
cannot verify (Competition contribution)”. in Leciure Notes in
Computer Science. Springer, 2024, pp. 353-358.

Daniel Dietsch et al. “Ultimate Taipan and Race Detection in Ultimate
- (Competition Contribution)”. I Lecture Notes in Computer Science.
Springer, 2023, pp. 582-587.

[DM19] David Delmas and Antoine Mine. “Analysis of Software Patches Using
Numerical Abstract Interpretation”. i1 ed by Bor-vuh fvan Chang
Lecture Notes in Computer Science. Springer, 2019, pp. 225-246. DOI:
10.1007/978-3-030-32304-2_12.

[DOM21] David Delmas, Abdelraouf Quadjaout, and Antoine Miné. “Static
Analysis of Endian Portability by Abstract Interpretation”. In: leciure
Notes in Computer Science. Springer, 2021, pp. 102-123.

[Hei+23] Matthias Heizmann et al. “Ultimate Automizer and the CommuHash
Normal Form - (Competition Contribution)”. 1 Lecture Notes in
Computer Science. Springer, 2023, pp. 577-581.

https://doi.org/10.1007/978-3-030-32304-2_12

[JMO18] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout.
“Modular Static Analysis of String Manipulations in C Programs”. -
ed. by Andreas Podelski. Lecture Notes in Computer Science. Springer, 2018,
pp. 243-262. DOI: 10.1007/978-3-319-99725-4_16.

[Jou+19] M. Journault et al. “Combinations of reusable abstract domains for a
multilingual static analyzer”. [n: New York, USA, Tuly 2019, pp. 1-17.

[MC25] M. Chalupa and C. Richter. “BuBAAK: Dynamic Cooperative Verification
(Competition Contribution)”. In- LNCS Springer, 2025,

https://doi.org/10.1007/978-3-319-99725-4_16

[MFM24]

[MM24a]

Raphaél Monat, Aymeric Fromherz, and Denis Merigoux. “Formalizing
Date Arithmetic and Statically Detecting Ambiguities for the Law”. In:
ed. by Stephanie Weirich. Lecture Notes in Computer Science. Springer, 2024,
pp. 421-450. DOI: 10.1007/978-3-031-57267-8_16.

Marco Milanese and Antoine Mine. “Generation of Violation

Witnesses by Under-Approximating Abstract Interpretation”. 1 ec. by
Rayna Dimitrova, Ori Lahav, and Sebastian Wolff. Lecture Notes in Computer
Science. Springer, 2024, pp. 50-73. DOI: 10.1007/978-3-031-50524-9_3.

https://doi.org/10.1007/978-3-031-57267-8_16
https://doi.org/10.1007/978-3-031-50524-9_3

[MM24b]

[MOM20a]

[MOM20b]

[MOM21]

Marco Milanese and Antoine Mine. “Under-Approximating Memory
Abstractions”. In: ed. by Roberto Giacobazzi and Alessandra Gorla. Lecture
Notes in Computer Science. Springer, 2024, pp. 300-326. DOI:
10.1007/978-3-031-74776-2_12.

R. Monat, A. Ouadjaout, and A. Miné. “Static Type Analysis by Abstract
Interpretation of Python Programs”. /1 [[Plcs 2020,

R. Monat, A. Ouadjaout, and A. Miné. “Value and allocation sensitivity
in static Python analyses”. In: ACM, 2020, pp. 813 DO
10.1145/3394451.3397205.

R. Monat, A. Ouadjaout, and A. Miné. “A Multilanguage Static Analysis
of Python Programs with Native C Extensions”. [n: 2021

https://doi.org/10.1007/978-3-031-74776-2_12
https://doi.org/10.1145/3394451.3397205

[OM20]

[PM24]

[PSV20]

A. Ouadjaout and A. Miné. “A Library Modeling Language for the
Static Analysis of C Programs”. (1 ed. by David Pichardie and
Mihaela Sighireanu. Lecture Notes in Computer Science. Springer, 2020,
pp. 223-247. DOI: 10.1007/978-3-030-65474-0_11.

Francesco Parolini and Antoine Mine. “Sound Abstract
Nonexploitability Analysis”. i1 [ecture Notes in Computer Science.
Springer, 2024, pp. 314-337.

Petr Peringer, Veronika Sokova, and Tomas Vojnar. “PredatorHP
Revamped (Not Only) for Interval-Sized Memory Regions and
Memory Reallocation (Competition Contribution)”. in Lecture Notes in
Computer Science. Springer, 2020, pp. 408-412.

https://doi.org/10.1007/978-3-030-65474-0_11

[Saa20]
[VMM23]

[VMM25]

Simmo Saan. Witness generation for data-flow analysis. 2020

Milla Valnet, Raphael Monat, and Antoine Minée. “Analyse statique de
valeurs par interprétation abstraite de programmes fonctionnels
manipulant des types algébriques récursifs”. /- ed by Timothy Bourke
and Delphine Demange. Praz-sur-Arly, France, Jan. 2023, pp. 211-242.

Milla Valnet, Raphael Monat, and Antoine Mine. “Compositional Static
Value Analysis for Higher-Order Numerical Programs”. [ec. by
Jonathan Aldrich and Alexandra Silva; Bergen, Norway: Dagstuhl Publishing,
June 2025, p. 15. bOI: 10.4230/LIPIcs.ECOOP.2025. 15.

https://doi.org/10.4230/LIPIcs.ECOOP.2025.15

[WC24]

[YZ)25]

Zhen Wang and Zhenbang Chen. “AISE: A Symbolic Verifier by
Synergizing Abstract Interpretation and Symbolic Execution
(Competition Contribution)”. I Lecture Notes in Computer Science.
Springer, 2024, pp. 347-352.

Y. Lin, Z. Chen, and J. Wang. “AISE v2.0: Combining Loop
Transformations (Competition Contribution)”. 1 LNCS. Springer, 2025,

	Mopsa Overview
	

	SV-Comp
	

	Competitive Mopsa?
	

	Conclusion
	

	Appendix
	References

