
Mopsa at SV-Comp

Raphaël Monat

rmonat.fr

APR à Lille
2 June 2025

rmonat.fr

Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up

Target program Program analyzer

3

7

?

1

Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up

Target program

Program analyzer

3

7

?

1

Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up

Target program Program analyzer

3

7

?

1

Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up

Target program Program analyzer

3

7

?

1

Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up

Target program Program analyzer

3

7

?

1

Automated Program Analysis

Motivation
Sheer quantity of programs and changes during their life:

Automated analyses will help scaling up

Target program Program analyzer

3

7

?

1

Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Sound

2

Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

SoundComplete

2

Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

2

Turing & Rice to the Rescue

(or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

2

Turing & Rice to the Rescue (or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

∅
Rice’s theorem

2

Turing & Rice to the Rescue (or not?)

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

Abstract
Interpretation

∅
Rice’s theorem

2

Advancing the state-of-the-art

How to evaluate, compare and improve automated program verification?

What about an academic competition?

SV-Comp since 2012, introduced by Dirk Beyer (LMU).

3

Outline

1 Mopsa Overview

2 SV-Comp

3 Competitive Mopsa?

4 Conclusion

4

Mopsa Overview

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

5

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

5

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

5

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)

I Can be used as an experimentation platform

5

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs
Including multi-language support

I Ease development of relational static analyses
High expressivity

I Open-source (LGPL)
I Can be used as an experimentation platform

5

gitlab.com/mopsa/mopsa-analyzer

Contributors (2018–2025, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.

6

Contributors (2018–2025, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.

6

Mopsa design

Analysis = composition of abstract domains

unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns

I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]

Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs

I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]

I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]

I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]

I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

SV-Comp

Presentation of SV-Comp

Software-Verification Competition

I Yearly, since 2012

I Part of ETAPS
I Organized by Dirk Beyer (Munich) + Jan Strejček (since 2025)
I 62 participating tools in 2025
I Initially for model checkers
Abstract interpreters dabbling since 2021 (Goblint)

I Rewards “incremental improvements” (software dev./maintenance)

9

Presentation of SV-Comp

Software-Verification Competition

I Yearly, since 2012
I Part of ETAPS

I Organized by Dirk Beyer (Munich) + Jan Strejček (since 2025)
I 62 participating tools in 2025
I Initially for model checkers
Abstract interpreters dabbling since 2021 (Goblint)

I Rewards “incremental improvements” (software dev./maintenance)

9

Presentation of SV-Comp

Software-Verification Competition

I Yearly, since 2012
I Part of ETAPS
I Organized by Dirk Beyer (Munich) + Jan Strejček (since 2025)

I 62 participating tools in 2025
I Initially for model checkers
Abstract interpreters dabbling since 2021 (Goblint)

I Rewards “incremental improvements” (software dev./maintenance)

9

Presentation of SV-Comp

Software-Verification Competition

I Yearly, since 2012
I Part of ETAPS
I Organized by Dirk Beyer (Munich) + Jan Strejček (since 2025)
I 62 participating tools in 2025

I Initially for model checkers
Abstract interpreters dabbling since 2021 (Goblint)

I Rewards “incremental improvements” (software dev./maintenance)

9

Presentation of SV-Comp

Software-Verification Competition

I Yearly, since 2012
I Part of ETAPS
I Organized by Dirk Beyer (Munich) + Jan Strejček (since 2025)
I 62 participating tools in 2025
I Initially for model checkers
Abstract interpreters dabbling since 2021 (Goblint)

I Rewards “incremental improvements” (software dev./maintenance)

9

Presentation of SV-Comp

Software-Verification Competition

I Yearly, since 2012
I Part of ETAPS
I Organized by Dirk Beyer (Munich) + Jan Strejček (since 2025)
I 62 participating tools in 2025
I Initially for model checkers
Abstract interpreters dabbling since 2021 (Goblint)

I Rewards “incremental improvements” (software dev./maintenance)

9

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property

I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM

I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness

I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs

I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples

I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic

I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability

I Memory safety
I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety

I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows

I Termination
I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination

I Data race

10

Presentation of SV-Comp (II)

“Tasks”

I Input check if a given program satisfies a property
I Constraints 15 minutes CPU time, 8GB RAM
I Output result (true, false or unknown) & witness
I Scoring discussed later

Programs

I Preprocessed C programs
I Lots of handcrafted or small examples
I “SoftwareSystems” category, more realistic
I Community-curated, including oracle verdicts

Properties

I Reachability
I Memory safety
I Integer overflows
I Termination
I Data race

10

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons
I BusyBox (coreutils alternative)
I Coreutils

I Linux Device Drivers
I OpenBSD
I uthash

11

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons

I BusyBox (coreutils alternative)
I Coreutils

I Linux Device Drivers
I OpenBSD
I uthash

11

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons
I BusyBox (coreutils alternative)

I Coreutils

I Linux Device Drivers
I OpenBSD
I uthash

11

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons
I BusyBox (coreutils alternative)
I Coreutils

I Linux Device Drivers
I OpenBSD
I uthash

11

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons
I BusyBox (coreutils alternative)
I Coreutils

I Linux Device Drivers

I OpenBSD
I uthash

11

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons
I BusyBox (coreutils alternative)
I Coreutils

I Linux Device Drivers
I OpenBSD

I uthash

11

Presentation of SV-Comp (III)

Category # tasks Median loc.

ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

I AWS C commons
I BusyBox (coreutils alternative)
I Coreutils

I Linux Device Drivers
I OpenBSD
I uthash

11

SV-Comp’s Scoring System

︸ ︷︷ ︸
verdict

Remarks
I community-based curation of verdicts
I 187 manual fixes in 2023, 20 fixes in 2024...

12

SV-Comp’s Scoring System

︸ ︷︷ ︸
verdict

Remarks
I community-based curation of verdicts
I 187 manual fixes in 2023, 20 fixes in 2024...

12

SV-Comp’s Scoring System

︸ ︷︷ ︸
verdict

Remarks
I community-based curation of verdicts
I 187 manual fixes in 2023, 20 fixes in 2024...

12

SV-Comp’s Scoring System (II)

Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

overall score ∝
∑

s∈subCategory

raw score in s
tasks in s

You may have a high raw score but not so good overall score.

13

SV-Comp’s Scoring System (II)

Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

overall score ∝
∑

s∈subCategory

raw score in s
tasks in s

You may have a high raw score but not so good overall score.

13

SV-Comp’s Scoring System (II)

Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

overall score ∝
∑

s∈subCategory

raw score in s
tasks in s

You may have a high raw score but not so good overall score.

13

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost

I Improve interoperability between verifiers?

Witnesses
Programs annotated with loop invariants

Issues (in my opinion)

I Inlining-based analysis vs context-free program annotations [Saa20]
I Cross-validator scores can be low [Bey+22] – 45%
I Until 2025, time(program verification) = time(witness validation)

14

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost
I Improve interoperability between verifiers?

Witnesses
Programs annotated with loop invariants

Issues (in my opinion)

I Inlining-based analysis vs context-free program annotations [Saa20]
I Cross-validator scores can be low [Bey+22] – 45%
I Until 2025, time(program verification) = time(witness validation)

14

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost
I Improve interoperability between verifiers?

Witnesses
Programs annotated with loop invariants

Issues (in my opinion)

I Inlining-based analysis vs context-free program annotations [Saa20]
I Cross-validator scores can be low [Bey+22] – 45%
I Until 2025, time(program verification) = time(witness validation)

14

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost
I Improve interoperability between verifiers?

Witnesses
Programs annotated with loop invariants

Issues (in my opinion)

I Inlining-based analysis vs context-free program annotations [Saa20]
I Cross-validator scores can be low [Bey+22] – 45%
I Until 2025, time(program verification) = time(witness validation)

14

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost
I Improve interoperability between verifiers?

Witnesses
Programs annotated with loop invariants

Issues (in my opinion)

I Inlining-based analysis vs context-free program annotations [Saa20]

I Cross-validator scores can be low [Bey+22] – 45%
I Until 2025, time(program verification) = time(witness validation)

14

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost
I Improve interoperability between verifiers?

Witnesses
Programs annotated with loop invariants

Issues (in my opinion)

I Inlining-based analysis vs context-free program annotations [Saa20]
I Cross-validator scores can be low [Bey+22] – 45%

I Until 2025, time(program verification) = time(witness validation)

14

SV-Comp’s “Witnesses”

Motivation

I Ensure that results can be validated, at a reduced computational cost
I Improve interoperability between verifiers?

Witnesses
Programs annotated with loop invariants

Issues (in my opinion)

I Inlining-based analysis vs context-free program annotations [Saa20]
I Cross-validator scores can be low [Bey+22] – 45%
I Until 2025, time(program verification) = time(witness validation)

14

Competitive Mopsa?

Adapting Mopsa to SV-Comp’s Framework

Differing workflows
Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

A “sequential portfolio” approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe
• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.

15

Adapting Mopsa to SV-Comp’s Framework

Differing workflows
Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

A “sequential portfolio” approach

1 Analyze the target program with Mopsa

2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe
• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.

15

Adapting Mopsa to SV-Comp’s Framework

Differing workflows
Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

A “sequential portfolio” approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe
• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.

15

Adapting Mopsa to SV-Comp’s Framework

Differing workflows
Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

A “sequential portfolio” approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe

• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.

15

Adapting Mopsa to SV-Comp’s Framework

Differing workflows
Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

A “sequential portfolio” approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe
• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.

15

Adapting Mopsa to SV-Comp’s Framework

Differing workflows
Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

A “sequential portfolio” approach

1 Analyze the target program with Mopsa
2 Postprocess Mopsa’s result to decide whether the property of interest holds

• Yes? finished, program is safe
• No? restart with a more precise analysis configuration

 Mopsa returns unknown or times out when a property is not verified.

15

Our 2025 sequential portfolio

Roughly:

1 Interval analysis without loop unrolling

2 Add string-length domain, loop unrolling of 2, various unrolling heuristics
3 Add relational analysis (with packing), loop unrolling of 15
4 Add trace partitioning, loop unrolling of 60
5 Fully relational analysis (no packing),

PPLite Polyhedra instead of Apron’s default.

+ Some task-specific heuristic autosuggestions.

16

Our 2025 sequential portfolio

Roughly:

1 Interval analysis without loop unrolling
2 Add string-length domain, loop unrolling of 2, various unrolling heuristics

3 Add relational analysis (with packing), loop unrolling of 15
4 Add trace partitioning, loop unrolling of 60
5 Fully relational analysis (no packing),

PPLite Polyhedra instead of Apron’s default.

+ Some task-specific heuristic autosuggestions.

16

Our 2025 sequential portfolio

Roughly:

1 Interval analysis without loop unrolling
2 Add string-length domain, loop unrolling of 2, various unrolling heuristics
3 Add relational analysis (with packing), loop unrolling of 15

4 Add trace partitioning, loop unrolling of 60
5 Fully relational analysis (no packing),

PPLite Polyhedra instead of Apron’s default.

+ Some task-specific heuristic autosuggestions.

16

Our 2025 sequential portfolio

Roughly:

1 Interval analysis without loop unrolling
2 Add string-length domain, loop unrolling of 2, various unrolling heuristics
3 Add relational analysis (with packing), loop unrolling of 15
4 Add trace partitioning, loop unrolling of 60

5 Fully relational analysis (no packing),
PPLite Polyhedra instead of Apron’s default.

+ Some task-specific heuristic autosuggestions.

16

Our 2025 sequential portfolio

Roughly:

1 Interval analysis without loop unrolling
2 Add string-length domain, loop unrolling of 2, various unrolling heuristics
3 Add relational analysis (with packing), loop unrolling of 15
4 Add trace partitioning, loop unrolling of 60
5 Fully relational analysis (no packing),

PPLite Polyhedra instead of Apron’s default.

+ Some task-specific heuristic autosuggestions.

16

Our 2025 sequential portfolio

Roughly:

1 Interval analysis without loop unrolling
2 Add string-length domain, loop unrolling of 2, various unrolling heuristics
3 Add relational analysis (with packing), loop unrolling of 15
4 Add trace partitioning, loop unrolling of 60
5 Fully relational analysis (no packing),

PPLite Polyhedra instead of Apron’s default.

+ Some task-specific heuristic autosuggestions.

16

Global results per configuration

Max. Conf. Tasks proved correct Tasks reaching 900s timeout

1 7002 389

2 7743 (+741) 970 (+581)
3 8489 (+746) 3377 (+2407)
4 8660 (+171) 5378 (+2001)
5 8933 (+273) 8440 (+3062)

17

Global results per configuration

Max. Conf. Tasks proved correct Tasks reaching 900s timeout

1 7002 389
2 7743 (+741) 970 (+581)

3 8489 (+746) 3377 (+2407)
4 8660 (+171) 5378 (+2001)
5 8933 (+273) 8440 (+3062)

17

Global results per configuration

Max. Conf. Tasks proved correct Tasks reaching 900s timeout

1 7002 389
2 7743 (+741) 970 (+581)
3 8489 (+746) 3377 (+2407)

4 8660 (+171) 5378 (+2001)
5 8933 (+273) 8440 (+3062)

17

Global results per configuration

Max. Conf. Tasks proved correct Tasks reaching 900s timeout

1 7002 389
2 7743 (+741) 970 (+581)
3 8489 (+746) 3377 (+2407)
4 8660 (+171) 5378 (+2001)

5 8933 (+273) 8440 (+3062)

17

Global results per configuration

Max. Conf. Tasks proved correct Tasks reaching 900s timeout

1 7002 389
2 7743 (+741) 970 (+581)
3 8489 (+746) 3377 (+2407)
4 8660 (+171) 5378 (+2001)
5 8933 (+273) 8440 (+3062)

17

Results

I 2023: 3rd in SoftwareSystems.
Category winner has been participating for 10 years!

I 2024: 1st in SoftwareSystems.

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

I 2025: 2nd in SoftwareSystems.
Trying to improve ranking in NoOverflows category (no luck!).

18

Results

I 2023: 3rd in SoftwareSystems.
Category winner has been participating for 10 years!

I 2024: 1st in SoftwareSystems.

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

I 2025: 2nd in SoftwareSystems.
Trying to improve ranking in NoOverflows category (no luck!).

18

Results

I 2023: 3rd in SoftwareSystems.
Category winner has been participating for 10 years!

I 2024: 1st in SoftwareSystems.

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

I 2025: 2nd in SoftwareSystems.
Trying to improve ranking in NoOverflows category (no luck!). 18

But, why?

I Community

I Gamified side
I Allocate time to improve Mopsa’s precision
I “What do you win?”

• A piece of wood!
• Some visibility?
• Mopsa supports de facto benchmarks

19

But, why?

I Community
I Gamified side

I Allocate time to improve Mopsa’s precision
I “What do you win?”

• A piece of wood!
• Some visibility?
• Mopsa supports de facto benchmarks

19

But, why?

I Community
I Gamified side
I Allocate time to improve Mopsa’s precision

I “What do you win?”

• A piece of wood!
• Some visibility?
• Mopsa supports de facto benchmarks

19

But, why?

I Community
I Gamified side
I Allocate time to improve Mopsa’s precision
I “What do you win?”

• A piece of wood!
• Some visibility?
• Mopsa supports de facto benchmarks

19

But, why?

I Community
I Gamified side
I Allocate time to improve Mopsa’s precision
I “What do you win?”

• A piece of wood!

• Some visibility?
• Mopsa supports de facto benchmarks

19

But, why?

I Community
I Gamified side
I Allocate time to improve Mopsa’s precision
I “What do you win?”

• A piece of wood!
• Some visibility?

• Mopsa supports de facto benchmarks

19

But, why?

I Community
I Gamified side
I Allocate time to improve Mopsa’s precision
I “What do you win?”

• A piece of wood!
• Some visibility?
• Mopsa supports de facto benchmarks

19

Improvements made in 2025

I Heuristic Autosuggestions

• Bounded recursion unrolling
• Loop unrolling for precise allocations
• Single loop in program unrolling

I Trace partitioning
I Widening with thresholds
I Memory deallocation
I Sound bitfield support

20

Improvements made in 2025

I Heuristic Autosuggestions
• Bounded recursion unrolling

• Loop unrolling for precise allocations
• Single loop in program unrolling

I Trace partitioning
I Widening with thresholds
I Memory deallocation
I Sound bitfield support

20

Improvements made in 2025

I Heuristic Autosuggestions
• Bounded recursion unrolling
• Loop unrolling for precise allocations

• Single loop in program unrolling

I Trace partitioning
I Widening with thresholds
I Memory deallocation
I Sound bitfield support

20

Improvements made in 2025

I Heuristic Autosuggestions
• Bounded recursion unrolling
• Loop unrolling for precise allocations
• Single loop in program unrolling

I Trace partitioning
I Widening with thresholds
I Memory deallocation
I Sound bitfield support

20

Improvements made in 2025

I Heuristic Autosuggestions
• Bounded recursion unrolling
• Loop unrolling for precise allocations
• Single loop in program unrolling

I Trace partitioning

I Widening with thresholds
I Memory deallocation
I Sound bitfield support

20

Improvements made in 2025

I Heuristic Autosuggestions
• Bounded recursion unrolling
• Loop unrolling for precise allocations
• Single loop in program unrolling

I Trace partitioning
I Widening with thresholds

I Memory deallocation
I Sound bitfield support

20

Improvements made in 2025

I Heuristic Autosuggestions
• Bounded recursion unrolling
• Loop unrolling for precise allocations
• Single loop in program unrolling

I Trace partitioning
I Widening with thresholds
I Memory deallocation

I Sound bitfield support

20

Improvements made in 2025

I Heuristic Autosuggestions
• Bounded recursion unrolling
• Loop unrolling for precise allocations
• Single loop in program unrolling

I Trace partitioning
I Widening with thresholds
I Memory deallocation
I Sound bitfield support

20

Our 2025 improvements

Category Prop. |tasks| Mopsa’24 Mopsa’25 Best score, verifier (2025)

Hardness R 4012 432 518 7426 SVF-SVC [CMY25]
Heap R 240 190 226 314 PredatorHP [PSV20]
Loops R 774 298 376 1031 AISE [WC24; YZJ25]
Recursive R 160 12 60 150 UTaipan [Die+23]

Heap M 247 40 154 331 PredatorHP [PSV20]
Juliet M 3271 2224 2530 4709 CPAchecker [Bai+24]
LinkedLists M 134 58 96 220 PredatorHP [PSV20]

Main N 1989 1920 2138 2756 UAutomizer [Hei+23]

AWS R 341 36 76 326 Bubaak [CH23; MC25]
DDL R 2420 3476 3602 3602 Mopsa
uthash M 192 96 108 246 Bubaak* [CH23; MC25; CR24]
uthash N 162 204 300 300 Mopsa

21

Strengths & Weaknesses

Strengths

I Scalability, esp. SoftwareSystems category

I Progress on NoOverflows (Ultimate family difficult to beat!)
I Sound analysis contesting some verdicts

Weaknesses

I Sequential portfolio could leverage incremental approaches
I Do we really need sequential portfolio?
I Verifying a single property vs all RTEs
I Unable to provide counterexamples yet

ongoing work by Marco [MM24a; MM24b]
I Fixed sequence of configurations

22

Strengths & Weaknesses

Strengths

I Scalability, esp. SoftwareSystems category
I Progress on NoOverflows (Ultimate family difficult to beat!)

I Sound analysis contesting some verdicts

Weaknesses

I Sequential portfolio could leverage incremental approaches
I Do we really need sequential portfolio?
I Verifying a single property vs all RTEs
I Unable to provide counterexamples yet

ongoing work by Marco [MM24a; MM24b]
I Fixed sequence of configurations

22

Strengths & Weaknesses

Strengths

I Scalability, esp. SoftwareSystems category
I Progress on NoOverflows (Ultimate family difficult to beat!)
I Sound analysis contesting some verdicts

Weaknesses

I Sequential portfolio could leverage incremental approaches
I Do we really need sequential portfolio?
I Verifying a single property vs all RTEs
I Unable to provide counterexamples yet

ongoing work by Marco [MM24a; MM24b]
I Fixed sequence of configurations

22

Strengths & Weaknesses

Strengths

I Scalability, esp. SoftwareSystems category
I Progress on NoOverflows (Ultimate family difficult to beat!)
I Sound analysis contesting some verdicts

Weaknesses

I Sequential portfolio could leverage incremental approaches
I Do we really need sequential portfolio?
I Verifying a single property vs all RTEs
I Unable to provide counterexamples yet

ongoing work by Marco [MM24a; MM24b]
I Fixed sequence of configurations

22

Strengths & Weaknesses

Strengths

I Scalability, esp. SoftwareSystems category
I Progress on NoOverflows (Ultimate family difficult to beat!)
I Sound analysis contesting some verdicts

Weaknesses

I Sequential portfolio could leverage incremental approaches

I Do we really need sequential portfolio?
I Verifying a single property vs all RTEs
I Unable to provide counterexamples yet

ongoing work by Marco [MM24a; MM24b]
I Fixed sequence of configurations

22

Strengths & Weaknesses

Strengths

I Scalability, esp. SoftwareSystems category
I Progress on NoOverflows (Ultimate family difficult to beat!)
I Sound analysis contesting some verdicts

Weaknesses

I Sequential portfolio could leverage incremental approaches
I Do we really need sequential portfolio?

I Verifying a single property vs all RTEs
I Unable to provide counterexamples yet

ongoing work by Marco [MM24a; MM24b]
I Fixed sequence of configurations

22

Strengths & Weaknesses

Strengths

I Scalability, esp. SoftwareSystems category
I Progress on NoOverflows (Ultimate family difficult to beat!)
I Sound analysis contesting some verdicts

Weaknesses

I Sequential portfolio could leverage incremental approaches
I Do we really need sequential portfolio?
I Verifying a single property vs all RTEs

I Unable to provide counterexamples yet
ongoing work by Marco [MM24a; MM24b]

I Fixed sequence of configurations

22

Strengths & Weaknesses

Strengths

I Scalability, esp. SoftwareSystems category
I Progress on NoOverflows (Ultimate family difficult to beat!)
I Sound analysis contesting some verdicts

Weaknesses

I Sequential portfolio could leverage incremental approaches
I Do we really need sequential portfolio?
I Verifying a single property vs all RTEs
I Unable to provide counterexamples yet

ongoing work by Marco [MM24a; MM24b]

I Fixed sequence of configurations

22

Strengths & Weaknesses

Strengths

I Scalability, esp. SoftwareSystems category
I Progress on NoOverflows (Ultimate family difficult to beat!)
I Sound analysis contesting some verdicts

Weaknesses

I Sequential portfolio could leverage incremental approaches
I Do we really need sequential portfolio?
I Verifying a single property vs all RTEs
I Unable to provide counterexamples yet

ongoing work by Marco [MM24a; MM24b]
I Fixed sequence of configurations

22

Conclusion

Conclusion

I Participation during Fall of 2023, 2024 and 2025.
I Mopsa is competitive!
I Raises interesting longer-term research questions (ANR RAISIN)
Beyond Termination: Resource-Aware Static Analyses?

I Exclamation-Triangle benchmark bias, scalability AnalyzeThat workshop?

23

References – I

[Bai+24] Daniel Baier et al. “CPAchecker 2.3 with Strategy Selection -
(Competition Contribution)”. In: Lecture Notes in Computer Science.
Springer, 2024, pp. 359–364.

[Bau+22] Guillaume Bau et al. “Abstract interpretation of Michelson
smart-contracts”. In: ed. by Laure Gonnord and Laura Titolo. ACM, 2022,
pp. 36–43. doi: 10.1145/3520313.3534660.

[Bey+22] Dirk Beyer et al. “Verification Witnesses”. In:
ACM Trans. Softw. Eng. Methodol. 4 (2022), 57:1–57:69.

https://doi.org/10.1145/3520313.3534660

References – II

[CH23] Marek Chalupa and Thomas A. Henzinger. “Bubaak: Runtime
Monitoring of Program Verifiers - (Competition Contribution)”. In:
Lecture Notes in Computer Science. Springer, 2023, pp. 535–540.

[CMY25] C. McGowan, M. Richards, and Y. Sui. “SVF-SVC: Software Verification
Using SVF (Competition Contribution)”. In: LNCS. Springer, 2025.

[CR24] Marek Chalupa and Cedric Richter. “Bubaak-SpLit: Split what you
cannot verify (Competition contribution)”. In: Lecture Notes in
Computer Science. Springer, 2024, pp. 353–358.

[Die+23] Daniel Dietsch et al. “Ultimate Taipan and Race Detection in Ultimate
- (Competition Contribution)”. In: Lecture Notes in Computer Science.
Springer, 2023, pp. 582–587.

References – III

[DM19] David Delmas and Antoine Miné. “Analysis of Software Patches Using
Numerical Abstract Interpretation”. In: ed. by Bor-Yuh Evan Chang.
Lecture Notes in Computer Science. Springer, 2019, pp. 225–246. doi:
10.1007/978-3-030-32304-2_12.

[DOM21] David Delmas, Abdelraouf Ouadjaout, and Antoine Miné. “Static
Analysis of Endian Portability by Abstract Interpretation”. In: Lecture
Notes in Computer Science. Springer, 2021, pp. 102–123.

[Hei+23] Matthias Heizmann et al. “Ultimate Automizer and the CommuHash
Normal Form - (Competition Contribution)”. In: Lecture Notes in
Computer Science. Springer, 2023, pp. 577–581.

https://doi.org/10.1007/978-3-030-32304-2_12

References – IV

[JMO18] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout.
“Modular Static Analysis of String Manipulations in C Programs”. In:
ed. by Andreas Podelski. Lecture Notes in Computer Science. Springer, 2018,
pp. 243–262. doi: 10.1007/978-3-319-99725-4_16.

[Jou+19] M. Journault et al. “Combinations of reusable abstract domains for a
multilingual static analyzer”. In: New York, USA, July 2019, pp. 1–17.

[MC25] M. Chalupa and C. Richter. “Bubaak: Dynamic Cooperative Verification
(Competition Contribution)”. In: LNCS. Springer, 2025.

https://doi.org/10.1007/978-3-319-99725-4_16

References – V

[MFM24] Raphaël Monat, Aymeric Fromherz, and Denis Merigoux. “Formalizing
Date Arithmetic and Statically Detecting Ambiguities for the Law”. In:
ed. by Stephanie Weirich. Lecture Notes in Computer Science. Springer, 2024,
pp. 421–450. doi: 10.1007/978-3-031-57267-8_16.

[MM24a] Marco Milanese and Antoine Miné. “Generation of Violation
Witnesses by Under-Approximating Abstract Interpretation”. In: ed. by
Rayna Dimitrova, Ori Lahav, and Sebastian Wolff. Lecture Notes in Computer
Science. Springer, 2024, pp. 50–73. doi: 10.1007/978-3-031-50524-9_3.

https://doi.org/10.1007/978-3-031-57267-8_16
https://doi.org/10.1007/978-3-031-50524-9_3

References – VI

[MM24b] Marco Milanese and Antoine Miné. “Under-Approximating Memory
Abstractions”. In: ed. by Roberto Giacobazzi and Alessandra Gorla. Lecture
Notes in Computer Science. Springer, 2024, pp. 300–326. doi:
10.1007/978-3-031-74776-2_12.

[MOM20a] R. Monat, A. Ouadjaout, and A. Miné. “Static Type Analysis by Abstract
Interpretation of Python Programs”. In: LIPIcs. 2020.

[MOM20b] R. Monat, A. Ouadjaout, and A. Miné. “Value and allocation sensitivity
in static Python analyses”. In: ACM, 2020, pp. 8–13. doi:
10.1145/3394451.3397205.

[MOM21] R. Monat, A. Ouadjaout, and A. Miné. “A Multilanguage Static Analysis
of Python Programs with Native C Extensions”. In: 2021.

https://doi.org/10.1007/978-3-031-74776-2_12
https://doi.org/10.1145/3394451.3397205

References – VII

[OM20] A. Ouadjaout and A. Miné. “A Library Modeling Language for the
Static Analysis of C Programs”. In: ed. by David Pichardie and
Mihaela Sighireanu. Lecture Notes in Computer Science. Springer, 2020,
pp. 223–247. doi: 10.1007/978-3-030-65474-0_11.

[PM24] Francesco Parolini and Antoine Miné. “Sound Abstract
Nonexploitability Analysis”. In: Lecture Notes in Computer Science.
Springer, 2024, pp. 314–337.

[PSV20] Petr Peringer, Veronika Soková, and Tomás Vojnar. “PredatorHP
Revamped (Not Only) for Interval-Sized Memory Regions and
Memory Reallocation (Competition Contribution)”. In: Lecture Notes in
Computer Science. Springer, 2020, pp. 408–412.

https://doi.org/10.1007/978-3-030-65474-0_11

References – VIII

[Saa20] Simmo Saan. Witness generation for data-flow analysis. 2020.

[VMM23] Milla Valnet, Raphaël Monat, and Antoine Miné. “Analyse statique de
valeurs par interprétation abstraite de programmes fonctionnels
manipulant des types algébriques récursifs”. In: ed. by Timothy Bourke
and Delphine Demange. Praz-sur-Arly, France, Jan. 2023, pp. 211–242.

[VMM25] Milla Valnet, Raphaël Monat, and Antoine Miné. “Compositional Static
Value Analysis for Higher-Order Numerical Programs”. In: ed. by
Jonathan Aldrich and Alexandra Silva; Bergen, Norway: Dagstuhl Publishing,
June 2025, p. 15. doi: 10.4230/LIPIcs.ECOOP.2025.15.

https://doi.org/10.4230/LIPIcs.ECOOP.2025.15

References – IX

[WC24] Zhen Wang and Zhenbang Chen. “AISE: A Symbolic Verifier by
Synergizing Abstract Interpretation and Symbolic Execution
(Competition Contribution)”. In: Lecture Notes in Computer Science.
Springer, 2024, pp. 347–352.

[YZJ25] Y. Lin, Z. Chen, and J. Wang. “AISE v2.0: Combining Loop
Transformations (Competition Contribution)”. In: LNCS. Springer, 2025.

	Mopsa Overview
	

	SV-Comp
	

	Competitive Mopsa?
	

	Conclusion
	

	Appendix
	References

