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How to evaluate, compare and improve automated program verification?
What about an academic competition?

SV-Comp since 2012, introduced by Dirk Beyer (LMU).



[ Mopsa Overview

2] sv-Comp

3] Competitive Mopsa?

[4] Conclusion
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Analysis = composition of abstract domains

unified domain signature = iterators are abstract domains

flexible architecture suitable for
various programming paradigms

separation of concerns

allows reuse of domains across
languages

defined as json files in
share/mopsa/configs
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Languages
C [JIMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23:; VMM25], Catala (date arithmetic
[MFM24])...

Properties

» Absence of RTEs

» Patch analysis [DM19]

» Endianness portability [DOM21]

» Non-exploitability [PM24]

» Sufficient precondition inference [MM24a; MM24b]
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Software-Verification Competition

Yearly, since 2012

Part of ETAPS

Organized by Dirk Beyer (Munich) + Jan Strejcek (since 2025)
62 participating tools in 2025

vV v vVvyy

Initially for model checkers
Abstract interpreters dabbling since 2021 (Goblint)

» Rewards “incremental improvements” (software dev./maintenance)
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Category # tasks  Median loc.
ReachSafety 6282 1267
MemSafety 6280 86
ConcurrencySafety 2370 127
NoOverflows 6539 49
Termination 3324 901
SoftwareSystems 5825 6655

Subcategories in SoftwareSystems

» AWS C commons » Linux Device Drivers
» BusyBox (coreutils alternative) » OpenBSD
» Coreutils » uthash
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true (witness confirmed)

unconfirmed (false, unknown, or resources exhausted)'

invalid (error in witness syntax)

WITNESS_VALIDATOR

VERIFIER

true-unreach

false-unreach

VERIFIER unknown

—_———

. invalid (error in witness syntax
verdict ¢ yntax)

WITNESS VALIDATOR [ unconfirmed (true, unknown, or resources exhausted) .

Remarks false (witness confirmed)
» community-based curation of verdicts

» 187 manual fixes in 2023, 20 fixes in 2024... 1
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Categories are divided into subcategories (a family of benchmarks).

Scoring incentive for balanced results among subcategories.

raw scorein s
overall score Z 2

# tasksins
sesubCategory

You may have a high raw score but not so good overall score.
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Programs annotated with loop invariants

» Inlining-based analysis vs context-free program annotations [Saa20]

» Cross-validator scores can be low [Bey+22] - 45%
» Until 2025, time(program verification) = time(witness validation)

14
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Differing workflows
Given a configuration and a program, Mopsa computes potential run-time errors.

SV-Comp: check whether a program statisfies one property.

A “sequential portfolio” approach

1| Analyze the target program with Mopsa
12 Postprocess Mopsa'’s result to decide whether the property of interest holds

e Yes? finished, program is safe
e No? restart with a more precise analysis configuration

~» Mopsa returns unknown or times out when a property is not verified.

15
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Roughly:
[l Interval analysis without loop unrolling
21 Add string-length domain, loop unrolling of 2, various unrolling heuristics
Bl Add relational analysis (with packing), loop unrolling of 15
4 Add trace partitioning, loop unrolling of 60
I8 Fully relational analysis (no packing),
PPLite Polyhedra instead of Apron’s default.

+ Some task-specific heuristic autosuggestions.

16
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Max. Conf. Tasks proved correct Tasks reaching 900s timeout

1 7002 389

2 7743 (+741) 970  (+581)
3 8489 (+746) 3377 (+2407)
4 8660 (+171) 5378 (+2001)
5 8933 (+273) 8440 (+3062)

17
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» 2023: 3rd in SoftwareSystems.
Category winner has been participating for 10 years!
» 2024: 1st in SoftwareSystems.

» 2025: 2nd in SoftwareSystems.
Trying to improve ranking in NoOverflows category (no luck!). 18
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» Community

» Gamified side | V'COMP&EO%‘?W
» Allocate time to improve Mopsa’s precision ‘ :"co“m'"é'e"w‘“’wndwm

» “What do you win?”
o A piece of wood!
e Some visibility?
e Mopsa supports de facto benchmarks

19
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» Heuristic Autosuggestions

e Bounded recursion unrolling
o Loop unrolling for precise allocations
o Single loop in program unrolling

» Trace partitioning

» Widening with thresholds
» Memory deallocation

» Sound bitfield support

20



Category Prop. [tasks| Mopsa’24 Mopsa'25 Best score, verifier (2025)

Hardness R 4012 432 518 7426 SVF-SVC [CMY25]
Heap R 240 190 226 314 PredatorHP [PSV20]
Loops R 774 298 376 1031 AISE [WC24; YZJ25]
Recursive R 160 12 60 150 UTaipan [Die+23]
Heap M 247 40 154 331 PredatorHP [PSV20]
Juliet M 3271 2224 2530 4709 CPAchecker [Bai+24]
LinkedLists M 134 58 96 220 PredatorHP [PSV20]
Main N 1989 1920 2138 2756 UAutomizer [Hei+23]
AWS R 341 36 76 326 Bubaak [CH23; MC25]
DDL R 2420 3476 3602 3602 Mopsa

uthash M 192 96 108 246  Bubaak* [CH23; MC25; CR24]
uthash N 162 204 300 300 Mopsa
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» Scalability, esp. SoftwareSystems category

» Progress on NoOverflows (Ultimate family difficult to beat!)
» Sound analysis ~» contesting some verdicts

Weaknesses
» Sequential portfolio could leverage incremental approaches
» Do we really need sequential portfolio?
» Verifying a single property vs all RTEs

» Unable to provide counterexamples yet
ongoing work by Marco [MM24a; MM24b]

» Fixed sequence of configurations

22



Conclusion




» Participation during Fall of 2023, 2024 and 2025.
» Mopsa is competitive!

» Raises interesting longer-term research questions (ANR RAISIN)
Beyond Termination: Resource-Aware Static Analyses?

» A benchmark bias, scalability AnalyzeThat workshop?
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