
The Mopsa static analysis platform, and
our quest to ease implementation &maintenance

Raphaël Monat – SyCoMoRES team, Lille

rmonat.fr

Dagstuhl #25242
11 June 2025

rmonat.fr

Introduction

whoami

Research Scientist at Inria Lille.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations

Automated Verification of Catala Programs

1

whoami

Research Scientist at Inria Lille.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations

Automated Verification of Catala Programs

1

whoami

Research Scientist at Inria Lille.

Research Interests

I Static analysis: C, Python, multi-language paradigms

I Formal methods for public administrations
Automated Verification of Catala Programs

1

whoami

Research Scientist at Inria Lille.

Research Interests

I Static analysis: C, Python, multi-language paradigms
I Formal methods for public administrations

Automated Verification of Catala Programs

1

A Program Analysis Trichotomy

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Sound

2

A Program Analysis Trichotomy

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

SoundComplete

2

A Program Analysis Trichotomy

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

2

A Program Analysis Trichotomy

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

2

A Program Analysis Trichotomy

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

∅
Rice’s theorem

2

A Program Analysis Trichotomy

All errors reported
by analyzer are
replicable in program

All errors in program
reported by analyzer

Guaranteed Termination

SoundComplete

Abstract
Interpretation

∅
Rice’s theorem

2

Motivation

Academic research around static analysis

Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

3

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

3

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable

I Eases research:
• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

3

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

3

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

3

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming

I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

3

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

3

Motivation

Academic research around static analysis
Ideal analyzer

I Sound, precise and scalable
I Eases research:

• Implementation • Experimental evaluation • Onboarding

Implementation hurdles

I Debugging time-consuming
I Maintenance necessary to build upon previous work

=⇒ Aiming for lowest possible implementation & maintenance costs

3

Outline

1 An overview of Mopsa

2 Avoiding regressions

3 Easing debugging

Developer-friendly interfaces

Testcase reduction

4 A plug-in system of analysis observers

4

An overview of Mopsa

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs Including multi-language support
I Ease development of relational static analyses

High expressivity 0 ≤ i < strlen(s)
I Open-source (LGPL)
I Can be used as an experimentation platform

Currently, fully context-sensitive analyses

5

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs Including multi-language support

I Ease development of relational static analyses
High expressivity 0 ≤ i < strlen(s)

I Open-source (LGPL)
I Can be used as an experimentation platform

Currently, fully context-sensitive analyses

5

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs Including multi-language support
I Ease development of relational static analyses

High expressivity 0 ≤ i < strlen(s)

I Open-source (LGPL)
I Can be used as an experimentation platform

Currently, fully context-sensitive analyses

5

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs Including multi-language support
I Ease development of relational static analyses

High expressivity 0 ≤ i < strlen(s)
I Open-source (LGPL)

I Can be used as an experimentation platform

Currently, fully context-sensitive analyses

5

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs Including multi-language support
I Ease development of relational static analyses

High expressivity 0 ≤ i < strlen(s)
I Open-source (LGPL)
I Can be used as an experimentation platform

Currently, fully context-sensitive analyses

5

gitlab.com/mopsa/mopsa-analyzer

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
gitlab.com/mopsa/mopsa-analyzer or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

Goals

I Explore new designs Including multi-language support
I Ease development of relational static analyses

High expressivity 0 ≤ i < strlen(s)
I Open-source (LGPL)
I Can be used as an experimentation platform

Currently, fully context-sensitive analyses
5

gitlab.com/mopsa/mopsa-analyzer

Contributors (2018–2025, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.

6

Contributors (2018–2025, chronological arrival order)

I A. Miné
I A. Ouadjaout
I M. Journault
I A. Fromherz

I D. Delmas
I R. Monat
I G. Bau
I F. Parolini

I M. Milanese
I M. Valnet
I J. Boillot

Maintainers in bold.

6

Mopsa design

Analysis = composition of abstract domains

unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns

I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Mopsa design

Analysis = composition of abstract domains
unified domain signature =⇒ iterators are abstract domains

I flexible architecture suitable for
various programming paradigms

I separation of concerns
I allows reuse of domains across
languages

I defined as json files in
share/mopsa/configs

Py.program # Py.desugar # Py.flow #

U.intraproc # U.loops # U.interproc #

Py.libraries # Py.data_model # Py.objects #

#

Py.environment Py.attributes

◦

#

Py.lists Py.dictsPy.tuples

◦

U.recency

#

U.intervals U.strings

Universal

C specific

Python specific

Switch

∧ Reduced product

◦ Composition

7

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b]

Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs

I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]

I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]

I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]

I Sufficient precondition inference [MM24a; MM24b]

8

Summary of analyses

Languages
C [JMO18; OM20], Python [MOM20a; MOM20b] Multilanguage Python+C [MOM21]

WIP: Michelson [Bau+22], OCaml [VMM23; VMM25], Catala (date arithmetic
[MFM24])…

Properties

I Absence of RTEs
I Patch analysis [DM19]
I Endianness portability [DOM21]
I Non-exploitability [PM24]
I Sufficient precondition inference [MM24a; MM24b]

8

Software Verification Competition [Mon+24]

I Tools have to

• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

9

Software Verification Competition [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)

• Within limited machine resources (15 minutes CPU time, 8GB RAM)
I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

9

Software Verification Competition [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

9

Software Verification Competition [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference

I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

9

Software Verification Competition [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score

9

Software Verification Competition [Mon+24]

I Tools have to
• Decide whether a program is correct (large penalties if wrong)
• Within limited machine resources (15 minutes CPU time, 8GB RAM)

I Corpus of ' 23,000 C benchmarks, now acts as a reference
I For our second participation, Mopsa won the “Software Systems” track!

1

10

100

1000

M
in

.
tim

e
 in

 s

2LS

Bubaak

Bubaak-SpLit

CBMC

CVT-ParPort

CPA-BAM-BnB

CPA-BAM-SMG

CPAchecker

DIVINE

ESBMC-kind

Goblint

Graves-CPA

Graves-Par

Infer

Mopsa

PeSCo-CPA

Symbiotic

UAutomizer

UKojak

UTaipan

-1000 -500 0 500 1000 1500 2000

Cumulative score 9

Avoiding regressions

Detour: providing transparent analysis results

Raising the bar in static analyzer transparency

$ static-analysis-tool file

...
No errors found

What has been checked? What has not?

10

Raising the bar in static analyzer transparency

$ static-analysis-tool file
...

No errors found

What has been checked? What has not?

10

Raising the bar in static analyzer transparency

$ static-analysis-tool file
...
No errors found

What has been checked? What has not?

10

Raising the bar in static analyzer transparency

$ static-analysis-tool file
...
No errors found

What has been checked? What has not?

10

Mopsa’s approach to being transparent – at a high level

if a# 6v p# then
add_alarm a# p#

if a# 6v p# then
add_alarm a# p#

else
add_safe_check p#

11

Mopsa’s approach to being transparent – at a high level

if a# 6v p# then
add_alarm a# p#

if a# 6v p# then
add_alarm a# p#

else
add_safe_check p#

11

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context

I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt

Itv Poly

x++

Safe Safe

y++

Alarm Safe

Selectivity

50% 100%

12

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt

Itv Poly

x++

Safe Safe

y++

Alarm Safe

Selectivity

50% 100%

12

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt

Itv Poly

x++

Safe Safe

y++

Alarm Safe

Selectivity

50% 100%

12

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt

Itv Poly

x++

Safe Safe

y++

Alarm Safe

Selectivity

50% 100%

12

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt Itv

Poly

x++ Safe

Safe

y++ Alarm

Safe

Selectivity 50%

100%

12

Mopsa’s approach to being transparent – example

Mopsa’s approach to being transparent

I Reporting status of all proofs / checks in every analyzed context
I Quantitative precision measure

Selectivity = #checks proved safe
#checks

1 int main() {
2 int n = _mopsa_rand_s32();
3 int y = -1;
4 for(int x = 0; x < n; x++)
5 y++;
6 }

Stmt Itv Poly
x++ Safe Safe
y++ Alarm Safe
Selectivity 50% 100%

12

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement
I “2,756 alarms” 87% checks proved correct – “selectivity”
I Program size “expression complexity”

Analysis of coreutils fmt

13

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement

I “2,756 alarms” 87% checks proved correct – “selectivity”
I Program size “expression complexity”

Analysis of coreutils fmt

13

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement
I “2,756 alarms” 87% checks proved correct – “selectivity”

I Program size “expression complexity”

Analysis of coreutils fmt

13

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement
I “2,756 alarms” 87% checks proved correct – “selectivity”
I Program size “expression complexity”

Analysis of coreutils fmt

13

Mopsa’s approach to being transparent – output

Benefits of the approach

I Easy to implement
I “2,756 alarms” 87% checks proved correct – “selectivity”
I Program size “expression complexity”

Analysis of coreutils fmt

13

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x)

, handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

14

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

14

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash

7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

14

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently

7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

14

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently

7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

14

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

14

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect

4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

14

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters

5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

14

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

14

Mopsa’s approach to being transparent – soundness assumptions

Soundness assumptions, through an example
extern int f(int *x), handling gradations

1 Crash 7

2 Ignore silently 7

3 Assume and report: f has no effect
4 Assume and report: f has any effect on its parameters
5 Assume and report: f has any effect on its parameters and on globals

Related topic: soundiness paper [Liv+15]

14

Avoiding regressions

Leveraging analysis transparency

Avoiding regressions

=⇒ check for precision changes

Benchmarks with precision oracles

I Know whether a given alarm should be raised
I Based on manual analysis, not scalable
I NIST’s Juliet Benchmarks, SV-Comp labeling of tasks (coarse)
I Can provide absolute precision measure

Otherwise: relative precision measures, rely on our selectivity computation.

15

Avoiding regressions

=⇒ check for precision changes

Benchmarks with precision oracles

I Know whether a given alarm should be raised
I Based on manual analysis, not scalable
I NIST’s Juliet Benchmarks, SV-Comp labeling of tasks (coarse)
I Can provide absolute precision measure

Otherwise: relative precision measures, rely on our selectivity computation.

15

Avoiding regressions

=⇒ check for precision changes

Benchmarks with precision oracles

I Know whether a given alarm should be raised
I Based on manual analysis, not scalable
I NIST’s Juliet Benchmarks, SV-Comp labeling of tasks (coarse)
I Can provide absolute precision measure

Otherwise: relative precision measures, rely on our selectivity computation.

15

Comparing analysis reports

mopsa-diff script, used to compare:

I analysis report(s): either single output or set of outputs
I usecases: different configurations, different versions of Mopsa

--- baseline/touch-many-symbolic-args-a4.json
+++ pplite/touch-many-symbolic-args-a4.json

- time: 589.0760
+ time: 675.1761

+ parse-datetime.y:1399.44-46: alarm: Invalid memory access
- parse-datetime.y:965.56-71: alarm: Invalid memory access
- parse-datetime.y:980.25-52: alarm: Invalid memory access
- parse-datetime.y:1003.23-50: alarm: Invalid memory access
- parse-datetime.y:921.56-71: alarm: Invalid memory access
- parse-datetime.c:1733.2-8: alarm: Invalid memory access
- parse-datetime.y:781.26-41: alarm: Invalid memory access
- parse-datetime.y:772.23-38: alarm: Invalid memory access
- parse-datetime.y:755.23-38: alarm: Invalid memory access
- parse-datetime.y:973.25-52: alarm: Invalid memory access
- parse-datetime.y:610.8-41: alarm: Invalid memory access
- parse-datetime.y:743.25-40: alarm: Invalid memory access

139 reports compared
avg. time change +52.065s
avg. speedup -36%
new alarms 2
removed alarms 32
new assumptions 0
removed assumptions 0
new successes 0
new failures 0

16

Comparing analysis reports

mopsa-diff script, used to compare:

I analysis report(s): either single output or set of outputs
I usecases: different configurations, different versions of Mopsa

--- baseline/touch-many-symbolic-args-a4.json
+++ pplite/touch-many-symbolic-args-a4.json

- time: 589.0760
+ time: 675.1761

+ parse-datetime.y:1399.44-46: alarm: Invalid memory access
- parse-datetime.y:965.56-71: alarm: Invalid memory access
- parse-datetime.y:980.25-52: alarm: Invalid memory access
- parse-datetime.y:1003.23-50: alarm: Invalid memory access
- parse-datetime.y:921.56-71: alarm: Invalid memory access
- parse-datetime.c:1733.2-8: alarm: Invalid memory access
- parse-datetime.y:781.26-41: alarm: Invalid memory access
- parse-datetime.y:772.23-38: alarm: Invalid memory access
- parse-datetime.y:755.23-38: alarm: Invalid memory access
- parse-datetime.y:973.25-52: alarm: Invalid memory access
- parse-datetime.y:610.8-41: alarm: Invalid memory access
- parse-datetime.y:743.25-40: alarm: Invalid memory access

139 reports compared
avg. time change +52.065s
avg. speedup -36%
new alarms 2
removed alarms 32
new assumptions 0
removed assumptions 0
new successes 0
new failures 0

16

Comparing analysis reports

mopsa-diff script, used to compare:

I analysis report(s): either single output or set of outputs
I usecases: different configurations, different versions of Mopsa

--- baseline/touch-many-symbolic-args-a4.json
+++ pplite/touch-many-symbolic-args-a4.json

- time: 589.0760
+ time: 675.1761

+ parse-datetime.y:1399.44-46: alarm: Invalid memory access
- parse-datetime.y:965.56-71: alarm: Invalid memory access
- parse-datetime.y:980.25-52: alarm: Invalid memory access
- parse-datetime.y:1003.23-50: alarm: Invalid memory access
- parse-datetime.y:921.56-71: alarm: Invalid memory access
- parse-datetime.c:1733.2-8: alarm: Invalid memory access
- parse-datetime.y:781.26-41: alarm: Invalid memory access
- parse-datetime.y:772.23-38: alarm: Invalid memory access
- parse-datetime.y:755.23-38: alarm: Invalid memory access
- parse-datetime.y:973.25-52: alarm: Invalid memory access
- parse-datetime.y:610.8-41: alarm: Invalid memory access
- parse-datetime.y:743.25-40: alarm: Invalid memory access

139 reports compared
avg. time change +52.065s
avg. speedup -36%
new alarms 2
removed alarms 32
new assumptions 0
removed assumptions 0
new successes 0
new failures 0

16

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are

I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

17

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are

I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

17

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are

I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

17

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code

I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

17

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code
I open-source – for the sake of reproducible science

I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

17

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

17

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach

• ∗ stubs can be added in marginal cases

17

CI, tests & benchmarks

Detecting breaking changes using continuous integration

I mopsa-diff to compare with
previous results

I Reusing all benchmarks from our
experimental evaluations

Benchmark selection
Our benchmarks are
I third-party real code
I open-source – for the sake of reproducible science
I unmodified∗

• Underscores practicality of our approach
• ∗ stubs can be added in marginal cases

17

Easing debugging

Developer-friendly interfaces

Where static analyzers usually start from

I Analysis output Too coarse

I Printing abstract state using builtins Not interactive
I Interpretation trace Can be dozens of gigabytes of text

18

Where static analyzers usually start from

I Analysis output Too coarse
I Printing abstract state using builtins Not interactive

I Interpretation trace Can be dozens of gigabytes of text

18

Where static analyzers usually start from

I Analysis output Too coarse
I Printing abstract state using builtins Not interactive
I Interpretation trace Can be dozens of gigabytes of text

18

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints

• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

19

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints

• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

19

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints

• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

19

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location

• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

19

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression

• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

19

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

19

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation

I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

19

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

19

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state

• Projection on specific variables

I Some scripting capabilities

19

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

19

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

An interactive engine acting as abstract debugger

GDB-like interface to the abstract interpretation of the program

Demo!

I Breakpoints
• Program location
• Specific transfer function, analysis of subexpression
• Alarm: jumping back to statement generating first alarm

I Navigation
I Observation of the abstract state

• Full state
• Projection on specific variables

I Some scripting capabilities

19

https://rmonat.fr/talk/240606_csv/#interactive-engine-demo

IDE support

I Language Server Protocol for linters (report alarms)

I Debug Adapter Protocol providing interactive engine interface
I Both protocols introduced by VSCode, supported by multiple IDEs

20

IDE support

I Language Server Protocol for linters (report alarms)
I Debug Adapter Protocol providing interactive engine interface

I Both protocols introduced by VSCode, supported by multiple IDEs

20

IDE support

I Language Server Protocol for linters (report alarms)
I Debug Adapter Protocol providing interactive engine interface
I Both protocols introduced by VSCode, supported by multiple IDEs

20

Easing debugging

Testcase reduction

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs
I In practice, some bugs will only be detected in large codebases
I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

21

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs

I In practice, some bugs will only be detected in large codebases
I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

21

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs
I In practice, some bugs will only be detected in large codebases

I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

21

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs
I In practice, some bugs will only be detected in large codebases
I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

21

Testcase reduction

Motivation

I Static analyzers are complex piece of code and may contain bugs
I In practice, some bugs will only be detected in large codebases
I Debugging extremely difficult: size of the program, analysis time

Automated testcase reduction using creduce [Reg+12]

file.c

oracle.sh

creduce small.c

21

Testcase reduction – II

22

Testcase reduction – III

Internal errors debugging

I Highly helpful to significantly reduce debugging time of runtime errors
(Apron mishandlings, raised exceptions, …)

I Has been applied to coreutils programs, SV-Comp programs of 10,000+ LoC

Reference Origin Original LoC Reduced LoC Reduction

Issue 76 SV-Comp 28,737 18 99.94%
Issue 81 SV-Comp 15,627 8 99.95%
Issue 134 SV-Comp 17,411 10 99.94%
Issue 135 SV-Comp 7,016 12 99.83%
M.R. 130 coreutils 77,981 20 99.97%
M.R. 145 coreutils 77,427 19 99.98%

23

https://gitlab.com/mopsa/mopsa-analyzer/-/issues/76
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/81
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/134
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/135
https://gitlab.com/mopsa/mopsa-analyzer/-/merge_requests/130#note_1516013076
https://gitlab.com/mopsa/mopsa-analyzer/-/commit/34baaa483725cb81bacf6cc8144fc9c86a8bdd63

Testcase reduction – III

Internal errors debugging

I Highly helpful to significantly reduce debugging time of runtime errors
(Apron mishandlings, raised exceptions, …)

I Has been applied to coreutils programs, SV-Comp programs of 10,000+ LoC

Reference Origin Original LoC Reduced LoC Reduction

Issue 76 SV-Comp 28,737 18 99.94%
Issue 81 SV-Comp 15,627 8 99.95%
Issue 134 SV-Comp 17,411 10 99.94%
Issue 135 SV-Comp 7,016 12 99.83%
M.R. 130 coreutils 77,981 20 99.97%
M.R. 145 coreutils 77,427 19 99.98%

23

https://gitlab.com/mopsa/mopsa-analyzer/-/issues/76
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/81
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/134
https://gitlab.com/mopsa/mopsa-analyzer/-/issues/135
https://gitlab.com/mopsa/mopsa-analyzer/-/merge_requests/130#note_1516013076
https://gitlab.com/mopsa/mopsa-analyzer/-/commit/34baaa483725cb81bacf6cc8144fc9c86a8bdd63

Testcase reduction – IV

Differential-configuration debugging

$ mopsa-c -config=confA.json file.c
Alarm: assertion failure
$ mopsa-c -config=confB.json file.c
No alarm

Has been used to simplify cases in externally reported soundness issues

24

Handling multi-file projects

creduce reduces a specific file
One mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build

• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make

I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

25

Handling multi-file projects

creduce reduces a specific file
One mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build

• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

25

Handling multi-file projects

creduce reduces a specific file
One mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options

• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

25

Handling multi-file projects

creduce reduces a specific file
One mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

25

Handling multi-file projects

creduce reduces a specific file
One mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make

I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

25

Handling multi-file projects

creduce reduces a specific file
One mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file

25

Handling multi-file projects

creduce reduces a specific file
One mitigation: generate a pre-processed, standalone file

Painful operation on large projects such as coreutils

Mopsa supports multi-file C projects

I mopsa-build
• Records compiler/linker calls and their options
• Creates a compilation database

 mopsa-build make drop-in replacement for make
I mopsa-c leverages the compilation database

mopsa-c mopsa.db -make-target=fmt

I Option to generate a single, preprocessed file 25

A plug-in system of analysis observers

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

26

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis

I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

26

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening

I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

26

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage

I Heuristic unsoundness/imprecision detection
I Profiling

26

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection

I Profiling

26

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

26

Hooks: a plug-in system of analysis observers

Hooks
Observe analyzer state before/after any expression/statement analysis

Current hooks

I Logs: trace of interpretation performed by the analysis
I Thresholds for widening
I Coverage
I Heuristic unsoundness/imprecision detection
I Profiling

26

Coverage hooks

Coverage

I Global metric for the analysis’ results
I Good to detect issues in the instrumentation of the fully context-sensitive
analysis

No symbolic argument
./src/coreutils-8.30/src/fmt.c:

'main' 76% of 72 statements analyzed
'set_prefix' 100% of 12 statements analyzed
'same_para' 100% of 1 statement analyzed
'get_line' 100% of 30 statements analyzed
'fmt' 100% of 7 statements analyzed
'base_cost' 100% of 16 statements analyzed
'line_cost' 100% of 10 statements analyzed
'get_prefix' 100% of 18 statements analyzed

Symbolic arguments
./src/coreutils-8.30/src/fmt.c:

'main' 100% of 72 statements analyzed

27

Heuristic unsoundness/imprecision detection

Detection of unsound transfer functions
Bottom shouldn’t appear after some statements (such as assignments)

Detection of imprecise analysis
Warns when top expressions are created

Simplifies the search for sources of large imprecision (esp. with rewritings)

28

Profiling

Standard profiling
Measures which parts of Mopsa are the most time-consuming

Abstract profiling hook
Measures which parts of the analyzed program are the most time-consuming

I Loop-level profiling
I Function-level profiling

Mopsa analysis of coreutils fmt Search ic

check_punctuation

strlen

putchar_unlocked

line_cost

fmt

g..
fmt_paragraph

flush_paragraph
get_line

ge..

put_linebase_cost
strchr

main

fputs..

g..

get_paragraph

memmove

put_word

%program

put_space

put_paragraph

29

Profiling

Standard profiling
Measures which parts of Mopsa are the most time-consuming

Abstract profiling hook
Measures which parts of the analyzed program are the most time-consuming

I Loop-level profiling
I Function-level profiling

Mopsa analysis of coreutils fmt Search ic

check_punctuation

strlen

putchar_unlocked

line_cost

fmt

g..
fmt_paragraph

flush_paragraph
get_line

ge..

put_linebase_cost
strchr

main

fputs..

g..

get_paragraph

memmove

put_word

%program

put_space

put_paragraph

29

Profiling

Standard profiling
Measures which parts of Mopsa are the most time-consuming

Abstract profiling hook
Measures which parts of the analyzed program are the most time-consuming

I Loop-level profiling
I Function-level profiling

Mopsa analysis of coreutils fmt Search ic

check_punctuation

strlen

putchar_unlocked

line_cost

fmt

g..
fmt_paragraph

flush_paragraph
get_line

ge..

put_linebase_cost
strchr

main

fputs..

g..

get_paragraph

memmove

put_word

%program

put_space

put_paragraph

29

Profiling – II

Apron vs PPLite on Coreutils touch

I PPLite is 14% slower but more precise (11 alarms removed). Why?

I Suggestion from Enea Zaffanella: widening operator.
I Easy to confirm intuition!

30

Profiling – II

Apron vs PPLite on Coreutils touch

I PPLite is 14% slower but more precise (11 alarms removed). Why?
I Suggestion from Enea Zaffanella: widening operator.

I Easy to confirm intuition!

30

Profiling – II

Apron vs PPLite on Coreutils touch

I PPLite is 14% slower but more precise (11 alarms removed). Why?
I Suggestion from Enea Zaffanella: widening operator.
I Easy to confirm intuition!

30

Profiling – II

Apron vs PPLite on Coreutils touch

I PPLite is 14% slower but more precise (11 alarms removed). Why?
I Suggestion from Enea Zaffanella: widening operator.
I Easy to confirm intuition!

30

Conclusion

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Symbolic profiling [BT18]
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [Do+18; MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

31

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]

I Frama-C & Goblint: flamegraphs, testcase reduction
I Symbolic profiling [BT18]
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [Do+18; MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

31

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction

I Symbolic profiling [BT18]
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [Do+18; MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

31

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Symbolic profiling [BT18]

I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [Do+18; MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

31

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Symbolic profiling [BT18]
I Leveraging LSP [LDB19]

I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [Do+18; MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

31

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Symbolic profiling [BT18]
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [Do+18; MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

31

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Symbolic profiling [BT18]
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:

• Mixing concrete+abstract [Do+18; MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

31

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Symbolic profiling [BT18]
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:
• Mixing concrete+abstract [Do+18; MVR23]

• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

31

Related work

Lots of folklore

I First work, applying and combining S.E. techniques for TAJS [AMN17]
I Frama-C & Goblint: flamegraphs, testcase reduction
I Symbolic profiling [BT18]
I Leveraging LSP [LDB19]
I Testing the soundness and precision of static analyzers [KCW19; TLR20;
MVR23; Kai+24; Fle+24]

I Debugging:
• Mixing concrete+abstract [Do+18; MVR23]
• Sound abstract debugger in Goblint [Hol+24a; Hol+24b]

31

Conclusion

Our current approach to ease Mopsa’s maintenance

I Non-regression testing of soundness & precision. CI on real-world software.

I Combination of existing techniques and new tools to debug & profile Mopsa

“std. tools on the concrete execution of the abstract interpreter”
 “new tools on abstract execution of target program”

Future directions

I More debugging tools?
I Exponential number of configurations
I Testing non-leaf abstract domains? Apron-compatible abstract domains?
I Larger usability improvements?

32

Conclusion

Our current approach to ease Mopsa’s maintenance

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa

“std. tools on the concrete execution of the abstract interpreter”
 “new tools on abstract execution of target program”

Future directions

I More debugging tools?
I Exponential number of configurations
I Testing non-leaf abstract domains? Apron-compatible abstract domains?
I Larger usability improvements?

32

Conclusion

Our current approach to ease Mopsa’s maintenance

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Future directions

I More debugging tools?
I Exponential number of configurations
I Testing non-leaf abstract domains? Apron-compatible abstract domains?
I Larger usability improvements?

32

Conclusion

Our current approach to ease Mopsa’s maintenance

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Future directions

I More debugging tools?
I Exponential number of configurations
I Testing non-leaf abstract domains? Apron-compatible abstract domains?
I Larger usability improvements?

32

Conclusion

Our current approach to ease Mopsa’s maintenance

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Future directions

I More debugging tools?
I Exponential number of configurations
I Testing non-leaf abstract domains? Apron-compatible abstract domains?
I Larger usability improvements?

32

Conclusion

Our current approach to ease Mopsa’s maintenance

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Future directions

I More debugging tools?

I Exponential number of configurations
I Testing non-leaf abstract domains? Apron-compatible abstract domains?
I Larger usability improvements?

32

Conclusion

Our current approach to ease Mopsa’s maintenance

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Future directions

I More debugging tools?
I Exponential number of configurations

I Testing non-leaf abstract domains? Apron-compatible abstract domains?
I Larger usability improvements?

32

Conclusion

Our current approach to ease Mopsa’s maintenance

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Future directions

I More debugging tools?
I Exponential number of configurations
I Testing non-leaf abstract domains? Apron-compatible abstract domains?

I Larger usability improvements?

32

Conclusion

Our current approach to ease Mopsa’s maintenance

I Non-regression testing of soundness & precision. CI on real-world software.
I Combination of existing techniques and new tools to debug & profile Mopsa
“std. tools on the concrete execution of the abstract interpreter”

 “new tools on abstract execution of target program”

Future directions

I More debugging tools?
I Exponential number of configurations
I Testing non-leaf abstract domains? Apron-compatible abstract domains?
I Larger usability improvements?

32

References – I

[AMN17] Esben Sparre Andreasen, Anders Møller, and
Benjamin Barslev Nielsen. “Systematic approaches for increasing
soundness and precision of static analyzers”. In: ed. by Karim Ali and
Cristina Cifuentes. ACM, 2017, pp. 31–36. doi: 10.1145/3088515.3088521.

[Bau+22] Guillaume Bau et al. “Abstract interpretation of Michelson
smart-contracts”. In: ed. by Laure Gonnord and Laura Titolo. ACM, 2022,
pp. 36–43. doi: 10.1145/3520313.3534660.

[BT18] James Bornholt and Emina Torlak. “Finding code that explodes under
symbolic evaluation”. In:
Proceedings of the ACM on Programming Languages OOPSLA (2018), pp. 1–26.

https://doi.org/10.1145/3088515.3088521
https://doi.org/10.1145/3520313.3534660

References – II

[DM19] David Delmas and Antoine Miné. “Analysis of Software Patches Using
Numerical Abstract Interpretation”. In: ed. by Bor-Yuh Evan Chang.
Lecture Notes in Computer Science. Springer, 2019, pp. 225–246. doi:
10.1007/978-3-030-32304-2_12.

[Do+18] Lisa Nguyen Quang Do et al. “Debugging static analysis”. In:
IEEE Transactions on Software Engineering 7 (2018), pp. 697–709.

[DOM21] David Delmas, Abdelraouf Ouadjaout, and Antoine Miné. “Static
Analysis of Endian Portability by Abstract Interpretation”. In: Lecture
Notes in Computer Science. Springer, 2021, pp. 102–123.

https://doi.org/10.1007/978-3-030-32304-2_12

References – III

[Fle+24] Markus Fleischmann et al. “Constraint-Based Test Oracles for
Program Analyzers”. In: ed. by Vladimir Filkov, Baishakhi Ray, and
Minghui Zhou. ACM, 2024, pp. 344–355. doi: 10.1145/3691620.3695035.

[Hol+24a] Karoliine Holter et al. “Abstract Debuggers: Exploring Program
Behaviors using Static Analysis Results”. In: Onward! ’24. Pasadena, CA,
USA: Association for Computing Machinery, 2024, pp. 130–146. doi:
10.1145/3689492.3690053.

[Hol+24b] Karoliine Holter et al. “Abstract Debugging with GobPie”. In: ed. by
Elisa Gonzalez Boix and Christophe Scholliers. ACM, 2024, pp. 32–33. doi:
10.1145/3678720.3685320.

https://doi.org/10.1145/3691620.3695035
https://doi.org/10.1145/3689492.3690053
https://doi.org/10.1145/3678720.3685320

References – IV

[JMO18] Matthieu Journault, Antoine Miné, and Abdelraouf Ouadjaout.
“Modular Static Analysis of String Manipulations in C Programs”. In:
ed. by Andreas Podelski. Lecture Notes in Computer Science. Springer, 2018,
pp. 243–262. doi: 10.1007/978-3-319-99725-4_16.

[Jou+19] M. Journault et al. “Combinations of reusable abstract domains for a
multilingual static analyzer”. In: New York, USA, July 2019, pp. 1–17.

[Kai+24] David Kaindlstorfer et al. “Interrogation Testing of Program Analyzers
for Soundness and Precision Issues”. In: ed. by Vladimir Filkov,
Baishakhi Ray, and Minghui Zhou. ACM, 2024, pp. 319–330. doi:
10.1145/3691620.3695034.

https://doi.org/10.1007/978-3-319-99725-4_16
https://doi.org/10.1145/3691620.3695034

References – V

[KCW19] Christian Klinger, Maria Christakis, and Valentin Wüstholz.
“Differentially testing soundness and precision of program
analyzers”. In: ed. by Dongmei Zhang and Anders Møller. ACM, 2019,
pp. 239–250. doi: 10.1145/3293882.3330553.

[LDB19] Linghui Luo, Julian Dolby, and Eric Bodden. “MagpieBridge: A General
Approach to Integrating Static Analyses into IDEs and Editors (Tool
Insights Paper)”. In: ed. by Alastair F. Donaldson. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, 21:1–21:25. doi:
10.4230/LIPICS.ECOOP.2019.21.

[Liv+15] Benjamin Livshits et al. “In defense of soundiness: a manifesto”. In:
Commun. ACM 2 (2015), pp. 44–46. doi: 10.1145/2644805.

https://doi.org/10.1145/3293882.3330553
https://doi.org/10.4230/LIPICS.ECOOP.2019.21
https://doi.org/10.1145/2644805

References – VI

[MFM24] Raphaël Monat, Aymeric Fromherz, and Denis Merigoux. “Formalizing
Date Arithmetic and Statically Detecting Ambiguities for the Law”. In:
ed. by Stephanie Weirich. Lecture Notes in Computer Science. Springer, 2024,
pp. 421–450. doi: 10.1007/978-3-031-57267-8_16.

[MM24a] Marco Milanese and Antoine Miné. “Generation of Violation
Witnesses by Under-Approximating Abstract Interpretation”. In: ed. by
Rayna Dimitrova, Ori Lahav, and Sebastian Wolff. Lecture Notes in Computer
Science. Springer, 2024, pp. 50–73. doi: 10.1007/978-3-031-50524-9_3.

https://doi.org/10.1007/978-3-031-57267-8_16
https://doi.org/10.1007/978-3-031-50524-9_3

References – VII

[MM24b] Marco Milanese and Antoine Miné. “Under-Approximating Memory
Abstractions”. In: ed. by Roberto Giacobazzi and Alessandra Gorla. Lecture
Notes in Computer Science. Springer, 2024, pp. 300–326. doi:
10.1007/978-3-031-74776-2_12.

[MOM20a] R. Monat, A. Ouadjaout, and A. Miné. “Static Type Analysis by Abstract
Interpretation of Python Programs”. In: LIPIcs. 2020.

[MOM20b] R. Monat, A. Ouadjaout, and A. Miné. “Value and allocation sensitivity
in static Python analyses”. In: ACM, 2020, pp. 8–13. doi:
10.1145/3394451.3397205.

[MOM21] R. Monat, A. Ouadjaout, and A. Miné. “A Multilanguage Static Analysis
of Python Programs with Native C Extensions”. In: 2021.

https://doi.org/10.1007/978-3-031-74776-2_12
https://doi.org/10.1145/3394451.3397205

References – VIII

[Mon+24] Raphaël Monat et al. “Mopsa-C: Improved Verification for C Programs,
Simple Validation of Correctness Witnesses (Competition
Contribution)”. In: Lecture Notes in Computer Science. Springer, 2024,
pp. 387–392.

[MVR23] Mats Van Molle, Bram Vandenbogaerde, and Coen De Roover.
“Cross-Level Debugging for Static Analysers”. In: ed. by João Saraiva,
Thomas Degueule, and Elizabeth Scott. ACM, 2023, pp. 138–148. doi:
10.1145/3623476.3623512.

https://doi.org/10.1145/3623476.3623512

References – IX

[OM20] A. Ouadjaout and A. Miné. “A Library Modeling Language for the
Static Analysis of C Programs”. In: ed. by David Pichardie and
Mihaela Sighireanu. Lecture Notes in Computer Science. Springer, 2020,
pp. 223–247. doi: 10.1007/978-3-030-65474-0_11.

[PM24] Francesco Parolini and Antoine Miné. “Sound Abstract
Nonexploitability Analysis”. In: Lecture Notes in Computer Science.
Springer, 2024, pp. 314–337.

[Reg+12] John Regehr et al. “Test-case reduction for C compiler bugs”. In: ed. by
Jan Vitek, Haibo Lin, and Frank Tip. ACM, 2012, pp. 335–346. doi:
10.1145/2254064.2254104.

https://doi.org/10.1007/978-3-030-65474-0_11
https://doi.org/10.1145/2254064.2254104

References – X

[TLR20] Jubi Taneja, Zhengyang Liu, and John Regehr. “Testing static analyses
for precision and soundness”. In: ACM, 2020, pp. 81–93. doi:
10.1145/3368826.3377927.

[VMM23] Milla Valnet, Raphaël Monat, and Antoine Miné. “Analyse statique de
valeurs par interprétation abstraite de programmes fonctionnels
manipulant des types algébriques récursifs”. In: ed. by Timothy Bourke
and Delphine Demange. Praz-sur-Arly, France, Jan. 2023, pp. 211–242.

[VMM25] Milla Valnet, Raphaël Monat, and Antoine Miné. “Compositional Static
Value Analysis for Higher-Order Numerical Programs”. In: ed. by
Jonathan Aldrich and Alexandra Silva; Bergen, Norway: Dagstuhl Publishing,
June 2025, p. 15. doi: 10.4230/LIPIcs.ECOOP.2025.15.

https://doi.org/10.1145/3368826.3377927
https://doi.org/10.4230/LIPIcs.ECOOP.2025.15

	Introduction
	

	An overview of Mopsa
	

	Avoiding regressions
	Detour: providing transparent analysis results
	Leveraging analysis transparency

	Easing debugging
	Developer-friendly interfaces
	Testcase reduction

	A plug-in system of analysis observers
	

	Conclusion
	

	Appendix
	References

