
Coding computational laws:
20 recommendations for public administrations

Raphaël Monata Liane Huttnerb

Abstract

Public administrations are steadily digitalizing all their procedures. In particular, com-
putational laws – such as taxes and benefits – are increasingly implemented within com-
puters, enabling scalable, automated computations. These computer implementations have
four key specificities: they are critical software at the intersection between law and computer
science, that will be updated regularly by legal changes, and have a long lifespan, counted
in decades. Thus, great care should be taken to avoid any issue in these specific legal im-
plementations. Building upon years of studying and coding computational laws, both in
administrations and as new research products, we propose 20 recommendations to ease the
development and maintenance of legal implementations. These recommendations aim at
being understandable for lawyers and computer scientists alike.

1 Introduction
In the last three decades, all states have steadily digitalized their public services, due to the con-
stant availability of computers, as well as the efficiency and cost cuts digitalization can provide.
The European Union, through its ambitious “Digital Decade Policy Programme” (European
Parliament and European Council, 2022) aims in particular at reaching 100% availability of
“key public services” of all member states by 2030.

However, this digitalization brings challenges in terms of accessibility and transparency of
public services. In this work, we consider the implementation of computational laws, that is, the
computer code running laws precisely describing computations – for example to describe taxes
or benefits. We argue that these computer programs have four key specifities. First, they are to
be considered critical software, as they can have dramatic societal impacts, e.g. by unfairly
denying benefits to families in need. While critical software usually concerns embedded systems
within avionics or power plants with life-threatening consequences, we argue that the studied
systems can have life-changing impacts too. Second, they are regularly updated through
series of patches coming from legislative processes. Third, these implementations have a really
long lifespan. Some have been developed in the late 90s and are supposed to run for decades to
come, meaning they need to be well designed and maintained to last so long. Last but not least,
translating computational laws into computer code is a complex process, that requires close
collaboration between computer scientists and lawyers. These past six years, we have
been able to work on legacy systems used in production by administrations, and to participate
in an interdisciplinary, international research project aiming at designing next-generation tools
easing the implementation and maintenance of public code. Our journey started through a
work aiming a reverse-engineering parts of the legacy compiler used for the French income
tax. We have been able to establish a close collaboration with the administration in charge of
producing and running the income tax computations. As a side benefit, we were able to observe
the current processes established by this administration. Thanks to this collaboration, we

aUniv. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
bCentre d’Etudes et de Recherche en Droit de l’Immatériel, Univ. Paris-Saclay, F-92330 Sceaux, France

1

have been able to successfully complete our reverse engineering and create a modern compiler
(Merigoux, Monat, & Protzenko, 2021) to replace their legacy tool. This compiler is now
being integrated back into the public administration. Following this work, we have taken part
in designing Catala (Huttner & Merigoux, 2022; Merigoux, Chataing, & Protzenko, 2021), a
next-generation computer language tailored to implement computational laws in a transparent,
lawyer-friendly fashion. Preliminary experiments made by the team on real-world legal texts
over the past few years have validated the key design decisions behind Catala, and opened
several interesting questions around legal interpretations made by developers (Merigoux et al.,
2023, 2024; Monat et al., 2024).

Building on this line of research we have been pursuing, our discussions and observations
both with academics and administrative civil servants, we share in this essay what we believe to
be the most important takeaways when coding computational laws. This essay can be considered
both as a set of recommendations and as a basis for further discussion. It is primarily targeted
at people who are writing new implementations of the law, but can also be used as a checklist
for people working on already existing codes and for scholarly discussions on the topic.

Limitations. There are many different kind of laws, diverse ways to code the law and different
types of actors. Our essay targets the implementation of computational laws, as done by public
administrations to provide public services to citizens. This article does not target systems aiming
at helping judges, implementations for private interests, laws that are not computational per se
(such as nationality acts or contract law). Our experience is limited to Western societies.

Outline. A summary of our twenty recommendations is provided in Figure 1. These rec-
ommendations are split in six different kinds, on which we elaborate in the following sections,
explaining why these recommendations are essential and how one can implement them. We
finish by briefly discussing related work.

2 Be aware of the specificities of implementing computational
laws

Recommendation 1: Coding the law is an interdisciplinary work between legal experts and
computer scientists that can only be reached through mutual trust and respect.

Coding the law is a difficult task that require close collaboration between lawyers and com-
puter scientists. This collaboration can only be successful if both parties respect and trust the
other. Both parties need to look at the other discipline with an open-mind and accept difficulty.
This can prove challenging since law and computer science function very differently.

On the one hand, programming leaves no room for ambiguity. A computer cannot un-
derstand a programmer directly. The programmer gives instructions to a computer through
programs, written in specified programming languages. The computer will only obey code in-
structions to the letter. Ambiguities cannot be resolved by computers, they have to be taken care
of during the programming part by a human. A wide variety of programming languages exist,
each with their sweet spot, for example in terms of ease of coding and long term maintenance.

On the other hand, laws are not a simple set of rules needing implementation by computer
scientists. Complexity, ambiguities and unplanned situations form an entire part of the legal
system – which that has been functioning for millenniums. Unclear, imprecise and contradictory
laws are perfectly normal, because of their social, political and philosophical functions. In this
respect, legal scholars and lawyers have developed complex tools and concepts. They have
discussed for decades – and even centuries – how to interpret the law, how to combine laws
that contradict each other, and to what extent applying the law requires active choices. Coding

2

Figure 1: Summary of recommendations

Be aware of the specificities of implementing computational laws

1. Coding the law is an interdisciplinary work between legal experts and computer sci-
entists that can only be reached through mutual trust and respect.

2. Since legal codes are critical software, use tools and techniques to ensure high-
assurance of your code.

3. Ensure that the codebase has a structure similar to the law which will allow you to
maintain it.

Make your implementation abide by the law

4. Your implementation needs to abide by local data protection and administrative laws.
5. Guarantee transparency of your code.
6. Make sure you have the complete set of laws you are implementing.
7. Report, tag and document any legal interpretation or additional hypothesis you are

using in your implementation

Use the right programming tools

8. Build a program that is deterministic and well-defined, without undefined behaviours
such as division by zero, out-of-bound array accesses.

9. Choose the right datatypes carefully:
• Use arbitrary-precision numbers to represent monetary units and avoid rounding

imprecision.
• Beware of date-related computations. They need to handle leap years, and

durations expressed in months or years are not precise.

Ease day-to-day technical development

10. Test your code rigorously with lawyers, and address changes in the law.
11. Version your code.
12. Put together continuous integration that ensures that your codebase is identified,

backed up and tested regularly. Ensure that production releases are bundled and
published automatically.

13. Separate developing concerns to facilitate maintenance
14. Setup a centralized approach to track known issues in your codebase

Ensure your project will last

15. Have a clear documentation for incoming users and developers.
16. Assess bus factor: number of developers with critical knowledge not shared with the

rest of the team.
17. Beware of proprietary solutions, both at the hardware and the software level.

Facilitate public interaction

18. Aim for explainable decisions that can be understood by citizens.
19. Allow individuals to appeal results of automated computations.
20. Use a bug tracking platform which also allows individuals to notify the problems they

are confronted with.

3

the law is impossible without knowing about these characteristics of the law and having a basic
understanding of the already existing answers.

It is only through this mutual understanding that coding the law can be done. Lawyers and
computer scientists will thus have to interact, in order to detect and resolve ambiguities arising
from the law during its translation into code.

Recommendation 2: Since legal codes are critical software, use tools and techniques to
ensure high-assurance of your code.

Critical software are software whose bugs can have dramatic consequences on human lives.
These typically are software used in planes, trains, hospitals or nuclear power plants. These
software pieces are traditionally validated by independent bodies, checking compliance with
standards. For example in civil avionics, the EASA & FAA check compliance with DO-178C
(RTCA, 2011).

We argue that software implementing laws can be classified as critical software as well. For
example, social benefits and tax collection depend almost entirely on the calculation done by
the computers and receive little human supervision. Any issue in the implementation can have
tremendous impact on citizens or even state funding. We provide some example of notorious
failures in Examples 1 and 2, and refer concerned readers to Redden et al. (2022) for a survey
of systems that were so faulty they have been canceled.

Thus, having a high assurance that the code being run corresponds to the law is paramount.
Treating programs that implement the law as critical software means that considerable resources
must be invested to ensure the implementation works as intended. As in transport, energy or
health, there can be a sub-classification of the criticality of legal software. Creating such a
classification is left as future work.

Example 1: Phoenix automated payroll failures for Canadian civil servants (Mockler,
2018)
The Phoenix automated payroll system was developed by IBM, and deployed in 2011, with
the goal of modernizing the pay of Canadian civil servants. The program should have
provided “$70 million in annual savings by centralizing pay operations”. However, the re-
placement of the legacy system failed, and more than half of all Canadian civil servants
suffered pay issues from the Phoenix automated payroll system, resulting in years of fixing
incurred financial issues for civil servants. What should have been an economical measure
transformed into “$2.2 billion in unplanned expenditures” for the Canadian government.

Example 2: Dutch childcare benefits scandal
Through a failing fraud detection system used between 2005 and 2019, the Dutch Tax and
Customs Administrations wrongly accused more than tens of thousand of parents to mak-
ing fraudulent benefits claims. These accusations lead to reimbursement demands, having
tremendous financial consequences on beneficiaries. The fraud detection system has been de-
scribed by the Dutch Data Protection Authority as “unlawful, discriminatory and improper”
(Dutch Data Protection Authority, 2020). The scandal culminated with the resignation of
the government in 2021.

Bouwmeester (2023) searches to understand reasons behind the failure of this system,
and highlight unused control mechanisms of the legislative and judiciary branches.

4

Recommendation 3: Ensure that the codebase has a structure similar to the law which will
allow you to maintain it.

Legal texts have a specific structure, usually consisting commonly consisting of a base case
refined by exceptions spread out throughout its description. This structure, whose core can
be encoded as default logic (Brewka & Eiter, 2000; Lawsky, 2017), is not straightforward to
encode using modern programming languages. Programmers can thus be tempted to introduce
discrepancies between code and law, or at least to structure the codebase differently from the
law. However, these implementations are then hard to maintain in sync with legislative texts
in the long term, as programmers may have trouble pinpointing the code impacted by a legal
modification. We have observed real-life cases where these effects turn out to be detrimental
as they accumulate over the years: most computational laws tend to evolve at least yearly,
accumulating large implementation overheads due to inadequate initial implementation choices.

3 Make your implementation abide by the law

Recommendation 4: Your implementation needs to abide by local digital and administrative
laws.

In addition to the laws the authors are implementing, authors should be keenly aware that
some “meta-laws” regulate machine implementations of the law. States and legislators have
adopted rules that will apply to the activity of coding the law, and not taking those laws into
account might end up in creating an illegal implementation. This distinction is essential and the
computation must respect both of these categories. At a high-level, there are two categories of
meta-laws applying to implementations: administrative law, and the rapidly expanding field of
digital law, encompassing in particular data protection, cybersecurity and artificial intelligence.
These laws are defined at different levels: some of them are national, and others stem from
international treaties. As these laws vary substantially depending on the country, we highlight
the general concepts relating to these laws and the current trends.

Administrative law. Computations made and used by administrations (such as tax com-
putations and social benefits) are also concerned by administrative laws. In particular, we
highlight what we believe is a major step regarding transparency of implementations: since
2017, French administrations are required to publish the source code of their implementation
(Legifrance, 2016). The state now maintains a list of implementations developed by administra-
tions (Direction Interministérielle du Numérique, 2023). If some are missing, citizens can seize
an administrative body (called CADA, 1978) to require implementations to be made public. We
believe transparency is paramount to maintain public trust and ensure a high level of software
quality. These administrations also have to inform citizens whenever an algorithm is used to
take a decision about them. Citizens can also request more specific information about the way
algorithmic computations have impacted their situation. Most importantly, the Constitutional
Council has expressly forbidden the use of self-learning program for public algorithms (Conseil
Constitutionnel, 2018).

Digital law. Data protection law deals with the processing of personal data through au-
tomated or non-automated means. If the computer program uses data that is linked to the
identity of an individual, then it must respect these laws. This will be the case most of the
times, since the laws will be applied to a specific person. Furthermore, personal data is often
defined very broadly, in all existing legal instruments. In the GDPR for example, “personal
data” means any information relating to an identified or identifiable natural person, who can
be identified, directly or indirectly (article 4 (1)). An IP address is, for example, considered as

5

personal data. The application of data protection law means that the programmer must respect
a certain number of principles. Most importantly, the concept of necessity in data protection
law may restrain the legality of the implementation. In Europe, for example, and as the CJEU
stated in several cases (notably C-524/06, Heinz Huber ; C-582/14, Breyer and C-73/ 16, Peter
Puškár), necessity means that the processing is “suitable for achieving the objectives pursued by
them and whether there is no other less restrictive means in order to achieve those objectives”.
This is a strict conception of necessity. It means that the computation of the law must be the
best way to achieve its implementation.

Cybersecurity and artificial intelligence laws have been recently introduced, e.g by the Eu-
ropean Union with its Cyber Resilience and Artificial Intelligence Acts announced in 2024. We
believe some software used by administrations are subject to these laws, although it is a bit
early to tell: both acts will apply in 2026-2027 at the earliest.

Recommendation 5: Guarantee transparency of your code.

Note that even if transparency of the computational code may not be required by your
local administrative laws, we strongly recommend to make your code public. This will improve
transparency of administrative processes and tackle criticism about opaque behaviors. It will
also incentive to keep good quality code.

More broadly, at an ethical level, we believe that when implementing the law, programmers
must have a sense of the criticality of the code they implement and the potential impact (both
positive and negative) they can have on citizens.

Recommendation 6: Make sure you have the complete set of laws you are implementing.

Going back from the meta-laws to the laws targeted by an implementation, we also want to
stress that finding the complete set of laws specifying the implementation is a paramount first
step before implementing anything.

Recommendation 7: Report, tag and document any legal interpretation or additional hy-
pothesis you are using in your implementation.

Imprecision, contextuality, need of interpretation, contradiction are inherent to the concept
of law itself. These characteristics of the law are major challenges to overcome for their imple-
mentation into computer code. Indeed, computers can only execute a fixed, specific sequence
of instructions, where all ambiguities have been resolved.

Computer implementation of the law will thus require choices. This is similar to any other
implementation of the law, be it by judges or the administration. We recommend all choices to
be clearly documented in the source code and tagged as such. This will allow for easy search,
but it also serves more important purposes: accountability and transparency over these choices.

Sometimes, the choices may appear as self-evident to domain experts or programmers. Ser-
got et al. (1986) describe for example choices that have been made in the interpretation of the
British nationality act, stating that it is “usually possible to identify the intended interpre-
tation with little difficulty”. Even if it is the case, we believe that the mere existence of the
interpretation needs to be documented and clearly established for the sake of transparency.

We provide below examples of ambiguities to be resolved.

Example 3: Ambiguity of sale in Section 121
In Section 121 of the US Tax Code, the word “sale” is used in many different ways. It
can refer to the sale of the property that will provoke the exclusion of the gain of Section
121, or it can refer to other sales, happening earlier or later in team. Encoding all these
situations in a single “sale” variable in the computation would be insufficient, because the

6

computer will not be able to discriminate between them. As a consequence, we need to
define different variables that are seemingly all expressed by the term “sale” in the law. An
implementation (Gesbert et al., 2024) needs in particular to differentiate sales that have
been made by individuals before they were filing jointly (under section 121 (B)), needing to
refer previous sales through variable other_section_121a_sale.

Example 4: An example of micro-choice (Merigoux et al., 2023)
Merigoux et al. (2023) argue that already choosing which inputs citizens will be asked to
fill amounts to a form of legal interpretation made by developers, which they call “micro-
choices”. For the sake of illustration, they consider a part of the French housing benefits,
where one eligibility criterion is “the first day of the calendar month following the third
month of pregnancy in respect of a child of rank three or more and the last day of the
month preceding that in which the child reaches his or her second birthday” (Legifrance,
2019). The authors argue that some choices may not respect privacy, and could even ask for
medical data (like the “presumed date of the beginning of the pregnancy” used by French
health professionals). In the end, they conclude that a good input is to ask users whether
their situation consists in being before or after the first day of the third month of pregnancy,
ensuring a good level of privacy which eases compliance with locally applicable privacy laws.

4 Use the right programming tools

Recommendation 8: Build a program that is deterministic and well-defined, without unde-
fined behaviours such as division by zero, out-of-bound array accesses.

We recommend using the right programming tools, to ensure that your programs are well-
behaved, and avoid unexpected behaviors that may happen randomly, either in time on the
same machine, or across different machines.

Our first recommendation is to ensure that your codebase does not contain undefined behav-
iors. By definition, the programs containing those behaviors may do anything, and the result
may also depend on which computer the program is run. Usual undefined behaviors include
division by zero and out-of-bounds array accesses. Some unsafe languages allow silent failures
with easy recovering operations. While it may seem appealing in the short term, we highly rec-
ommended against it. This is a recipe for introducing some weird operations in your codebase,
which may stay until no one knows why it should happen anymore. We observed this kind of
issue in real-world cases used in production.

Recommendation 9: Choose the right datatypes carefully:

• Use arbitrary-precision numbers to represent monetary units and avoid rounding im-
precision.

• Beware of date-related computations. They need to handle leap years, and durations
expressed in months or years are not precise.

Our second recommendation concerns the computer representation of decimal numbers. As
computer memory is finite, not all numbers can be explicitly represented. A popular repre-
sentation is floating-point arithmetic, which offers a good performance-precision ratio for tasks
such as numerical computing. Floating-point operators are well studied by experts, who have
been able to prove that the relative rounding error of each operation can be upper-bounded.
We refer the interested readers to “Handbook of Floating-Point Arithmetic” from Muller et al.
(2018), for an in-depth coverage of this topic. This scientific community has also developed

7

tools that can estimate rounding errors of a given program, if floating-point computations are
the option you finally choose. However, we warn the readers that a lot of expertise is needed to
avoid cascading rounding errors which may lead to catastrophic results; an example is provided
in Example 5. Basic numbers such as 0.1 are not exactly representable in binary floating-point
arithmetic.

Example 5: An example of catastrophic imprecision in floating-point arithmetic (Muller
et al., 2018)
In their “Handbook of Floating-Point Arithmetic”, Muller et al. (2018) provide an example
of a sequence of computations (provided below) which converges towards 6 using real math-
ematical numbers. However, computations of this sequence using traditional floating-point
arithmetic offered by computers will converge to a value of 100, resulting in a catastrophic
imprecision. 

u0 = 2

u1 = −4

un = 111− 1130
un−1

+ 3000
un−1un−2

If there are no specific legal guidance on the precision of decimal computations, nor floating-
point experts to help you, we strongly recommend using arbitrary-precision numbers to represent
decimal numbers you may use (monetary units, ...) in order to avoid catastrophic results.
An example of arbitrary-precision numbers library is GNU’s MP (GMP Granlund and GMP
Development Team, 2015). If you really need to rely on floating-point numbers, you may want
to carefully choose between using binary and decimal representations (Cowlishaw, 2003).

To a lesser extent, we would like to warn our readers about date-related computations. First,
the case of leap years should not be forgotten. More importantly, durations expressed in months
or years will have a length depending on the starting date, and computing these durations may
even be ambiguous, as shown in Example 6. As we argued before, we seek to proscribe any
ambiguous computation, and advise readers to seek legal guidance to clarify these cases. We
refer the interested reader to the work of Monat et al. (2024) formally defining date arithmetic
and providing tools to detect ambiguous computations.

Example 6: Ambiguous computations in date arithmetic (Monat et al., 2024)
Let us consider the date defined as one month after March 31st. Since April has only 30
days, you can either consider the result to be April 30th or May 1st, depending on the
“rounding mode” you choose. Some bodies of law choose another approach, specifying that
a month is a duration defined as 30 days.

A similar case happens when you want to compute the age of someone who is a “leaper”,
i.e., born a February 29th – depending on the country, leapers will come of age on March
1st or on February 28th.

5 Ease day-to-day technical development
In addition to their criticality, another defining aspect of legal implementations is their really
long lifespan: unless the implemented body of law is radically changed, the implementation
may have started 20 years ago and can live – and will have to be kept updated – for decades
to come. This maintenance will be a significant challenge, and any step where time has been
invested to ease maintenance will have tremendous positive impact in the years to come. This
section offers advice to reduce those costs, some of them being standard software engineering
techniques. We refer the reader to Thomas and Hunt (2019) for an in-depth reference about

8

software engineering and project development.

Recommendation 10: Test your code rigorously with lawyers, and address changes in the
law.

We recommend establishing a test suite for your implementation. These tests describe what
your implementation is supposed to return for specific input cases. These cases can be either
real or fictitious cases. Running those tests will provide an easy way to check that you have not
made breaking changes into your codebase. It will also make sure during your design phase that
you all agree on some examples. These tests should be manually established by legal experts
to make sure they abide by the law. They should cover most, if not all of the possible cases
encountered by your implementation.

Every time the law is updated, those tests will have to be thoroughly reviewed to address any
changes. Adding tests for new cases is also recommended. We cannot emphasize this strongly
enough: the correct update of testcases is critical to ensure smooth maintenance and to detect
potential bugs as early as possible.

Recommendation 11: Version your code, and ensure that production releases are bundled
automatically.

Using a version control system such as “git” will bring many benefits to your team and
your development workflow. In particular, it provides means to work as a team on the same
codebase: you can make modifications in your own space, and then share them with the rest
of the team so they can review those before you add them to your official codebase. It keeps
a history of your software, which always comes in handy when you search for the source of a
regression. Finally, it allows to back up your codebase in a server.

Recommendation 12: Put together continuous integration, ensuring that your codebase is
identified, backed up and tested regularly. Ensure that production releases are bundled and
published automatically.

We suggest you add continuous integration to your project. This mechanism will regularly
fetch your codebase, and perform some sanity checks on it, for example by verifying it can
be run and that the test suite mentioned above returns the expected results. This process is
automatic and periodic – it can for example be configured to be run each time you make a new
change or each night. It will allow for early detection of breaking changes in your codebase,
provided your test suite is covering the changes.

An added benefit of continuous integration and code versioning is that releases and distri-
bution of the different versions of your software can be done automatically. Automatic releases
will not take human development time, and avoid human errors in packaging.

Recommendation 13: Separate developing concerns to facilitate maintenance

We recommend separating concerns in your codebase: the legal part of your code should
not be written in the same repository as, for example, its interface. In practice, the different
interfaces (for example, those used by other service in your administration, or by citizens) can
even be handled by another team. This separation of concerns also means you have to carefully
consider which components will be exposed to other administrative services. Let us assume
your legal codebase contains a number of different functions. Some of these functions are for
your internal use only: you may decide to change them a lot across different versions, remove
them, replace it with others... If you make public every function of your codebase, those internal
functions could be used by other services. This would restrict your maintenance freedom as you
would not be able to change those internal functions, at risk of breaking the code of other parts

9

of your administration. Thus, we recommend to only make the necessary functions exposed
when you distribute your component.

Recommendation 14: Setup a centralized approach to track known issues in your codebase.

A bug tracking platform is another tool that should help software maintenance. It provides
a way to centralize the issues you have discovered about your project, categorize and discuss
those issues as well as assign whoever should fix it. It also provides a way for everyone to see
how the project is going on. If you do not centralize issues or some of their data, for example by
discussing some issues over email, or if you keep the list of issues as a local file, it will have dire
consequences at the inevitable time when your team will change. In addition, having a central
platform may trigger inputs or discussions from your teammates and help resolve the issue. We
recommend that known corner cases of your implementation be also added to your bug tracker.

6 Ensure your project will last

Recommendation 15: Have a clear documentation for incoming users and developers.

All teams have a life, where some members may leave and others may come. Accidents
may also happen, creating abrupt and unexpected departures. We recommend to have all
processes clearly documented in written documents. Writing this documentation will take time,
but it may help pinpoint some issues in the current workflow, and will help with onboarding
newcomers!

Recommendation 16: Assess bus factor: number of developers with critical knowledge not
shared with the rest of the team.

Alongside this process, we recommend assessing the “bus factor” of your team: the number
of members with critical pieces of knowledge that is not shared with any other member of the
team and whose knowledge would disappear in case of an accident. This assessment should
happen regularly, and depends on the the dynamics of your team evolution, and the potential
risks of its members. Whenever possible, we advise to document the identified critical pieces of
knowledge to reduce risk.

Recommendation 17: Beware of proprietary solutions, both at the hardware and the soft-
ware level.

We are strongly wary of proprietary solutions, where a company provides access specific
hardware or software they develop and license to you. These solutions may be appealing in the
short term, by providing external expertise and ready to run, potentially specialized solutions.
However, you will lose expertise and you may end up locked in a solution developed by a
single company. While your administration will have to continue its work and implementation,
proprietary companies have their own priorities, can go bankrupt or significantly increase their
fees in the long term.

7 Facilitate public interaction

Recommendation 18: Aim for explainable decisions that can be understood by citizens.

In order to guarantee a high level of trust and accountability, we recommend that computa-
tional implementations should be explainable: citizens should be able to trace and follow how

10

the computation reached a given amount or decision, and how this has changed compared to
previous computations.

In France, administrations are required by the law to provide explanations1, although ex-
plainability is still a research topic and we have yet to see concrete and compelling examples of
explainable decisions in production.

Recommendation 19: Allow individuals to appeal results of automated computations.

When an explanation is not satisfying, individuals should be able to appeal the result of the
computational implementation. This is for example codified by the European Union’s GDPR
Recital 71 which mentions that people can “obtain an explanation of the decision reached after
such assessment and to challenge the decision” European Parliament and European Council,
2016.

Recommendation 20: Use a bug tracking platform which also allows individuals to notify
the problems they are confronted with.

As a last resort, we recommend providing an open, bug tracking platform tracking appeals
and potential misbehaviors identified by citizens. This will improve transparency. It may also
help in fixing bugs not for a single household but ensure the fix is backpropagated to all affected
households in similar situations.

8 Related work
Analyzing failures and detecting errors. Redden et al. (2022) study 61 cases of canceled
automated public services across Europe, UK, North America, Australia and New Zealand.
From this study, they emit ten recommendations in order to avoid further cancellations, but
more importantly to avoid deployment of tools having negative impact on citizens. Escher and
Banovic (2020) define method to detect errors in a benefit screening tool of the Pennsylvanian
state, finding several case where the screening tool would advise not to apply to benefits citizens
would have been eligible to. Tizpaz-Niari et al. (2023) propose a debugging method for the US
tax preparation software, which is applied to strengthen open-source tools by finding several
accountability bugs and missing eligibility conditions. Goutagny et al. (2025) present a method
to automatically find all interpretation conflicts within a Catala program, and apply it on the
implementation of the French housing benefits.

Other guides and recommendations. van Eck et al. (2022) provide a way to audit legal
implementations through a three-way perspective: legal, computer science, and through the
lens of accountability obligations. Some audits have already been done in the Netherlands, and
the guidelines have been adopted by the state. Andrews (2022) describe guidelines to design
trustful and transparent AI systems for the case of the public sector. Chignard and Guerry
(2019), as senior members of the DINUM French administration (in charge of the digital policy
for the state), provide a guide for all French administrations, explaining what kind of algorithms
may bed used in the public sector, ethics and responsability issues as well as local laws regard-
ing general algorithmic transparency. This guide builds upon a position paper (Chignard &
Penicaud, 2019) from high-ranking French civil servants identifying specifics challenges of pub-
lic sector algorithms, providing recommendations to design accountable automated procedures.
The Organization for Economic Co-opereration and Development (OECD) published two re-
ports in 2020 related to public code. The first report (Organisation for Economic Co-operation

1“For these decisions, the supervision officer ensures that [...] able to explain, in detail and in an intelligible
form, to the concerned person the way in which the processing has been implemented with regard to them.”
(Legifrance, 2018)

11

and Development, 2020) is a whitepaper envisioning future tax systems (dubbed “Tax Admin-
istration 3.0”), where tax systems are closely integrated with “taxable events”, improving the
overall efficiency of administrations. The second report Mohun and Roberts (2020), alongside
Diver (2021), advocate for “rules as code”, meaning that legislative processes should already
produce code instead of laws that can only be interpreted by lawyers, and then implemented
as code. Similarly, a New Zealand Government report advocates to co-design legislation and
the corresponding machine-consume version. While we agree that better cooperation between
lawyers and computer scientists are required to improve public implementation of computational
law, we have several reservations this approach. First, the interaction with implementations of
laws predating this paradigm is not considered, and it seems unlikely that all laws targeting
e.g. taxes would be canceled to start a clean slate for the purposes of a new development ap-
proach. Second, it is our understanding that legislators, in some cases, barely have the time
to draft laws: assuming they have the skills to write computer code, it is unlikely that they
would have time to do it during processes. Third, this approach reminds us of tech companies
developing non-critical software which can afford to “move fast and break things”. However,
we agree with Mohun and Roberts (2020) on the need for close interdisciplinary collaboration
and their following declaration “An approach emphasising the use of a multidisciplinary team
and the co-creation of human and machine-consumable rules appears most likely to deliver”.
Through an experimental study, Guitton et al. (2025) find that providing frameworks to im-
prove implementations of automatically processable regulations lead participants to creating
better designs, suggesting that organizations should be mandated to use such guides in order
to minimize potential issues within their systems.

On proprietary solutions. Bouras et al. (2013) provide guidelines helping public adminis-
trations choosing between open-source and proprietary software. Note that the Organisation
for Economic Co-operation and Development (2020) warn of the potential risks of delegating
work to the private sector, and proprietary solutions, in particular with “the risk of commercial
lock-in, where one company holds proprietary access to the rules and can unfairly leverage a
service or platform”. The Commons Strategies Group (2012), in “The Wealth of the Commons”
go further and advocate that public administration should use free software, in particular to
keep citizen’s trust and avoid delegating critical infrastructure to foreign companies.

Legacy & Modernization. Bellotti (2021) describes how to maintain legacy computer sys-
tems, and provides modernization strategies and insights. Starting from the European Commis-
sion “no legacy principle” – where systems older than 15 years would have to be replaced – Irani
et al. (2023) study the impact of legacy systems and the digital transformation of European
public administrations. They highlight in particular that “legacy systems are frequently associ-
ated to vendor lock-in situations” (in case of proprietary software), which upon modernization
creates compatibility issues. Bozeman (2003) explores the causes of failure of the 1990-1996
modernization of IRS (US) tax system and describe cultural changes performed in the IRS
following this failure.

Coding the law. There is a long line of research studying, both from theoretical and practical
perspectives, how laws can be implemented, and what impact it can have.

In the field of law, Pierre Catala pioneered the proposition that programmers establish a set
of “invariants” on which the structure of the computer program will rest. These “invariants”
are the concepts that will probably never change because they form the basis of the particular
legal statute (Catala, 1998). Understanding the statute through these invariants can be a good
start, though it is not sufficient in practice.

Our recommendation 3 corresponds to the early work of Bench-Capon and Coenen (1992)

12

recommending to establish isomorphism, i.e., a well-defined correspondence between an imple-
mentation and the corresponding legal knowledge-based system.

Hoffmann-Riem (2020) warn against the risks of translating legal rules – which can be
interpreted in various ways, to allow leeway through human factors – into computer code where
no such ambiguity can be kept; this can thus lead to radical changes in how laws are applied.
They base their discussion on German legal provisions regulating automated administrative
decisions.

Ranchordas and Scarcella (2021) highlight the inequalities that digitalization of public ser-
vices can bring, as full digitalization reduces accessibility to parts of the population unable to
use, or access, a working computer. The authors argue that these inequalities can be further
strengthened when private companies provide intermediate software used to interact between
citizens and state (such as tax preparation software in the US).

Escher et al. (2024) study the behavior of fifteen teams of students (being either in computer
science or law curriculum), tasked with implementing parts of the US Bankruptcy code in the
JavaScript programming language. Only two teams succeeded in creating a faithful implemen-
tation of the law. What is more, most computer science students were confident in their tool
and a significant part were willing to replace human judges by their tool. Through this study,
the authors thus advocate for greater care to be taken during production of legal software, as
the disciplinary separation between computer science and law is a huge source of errors and
mistranslations. This work experimentally confirms our Recommendation 1 about the need
for deep cooperation between legal experts and computer scientists involved in implementing
computational laws.

The Catala programming language (Huttner & Merigoux, 2022; Merigoux, Chataing, &
Protzenko, 2021), named after Pierre Catala, ensures a structural correspondence between law
articles and their implementation through literate programming. Literate programming means
that the code is always linked to the law it is based on, which improves transparency of the
implementation and simplifies maintenance.

Besides the scalability benefits stemming from the computer implementation of computa-
tional laws, new research shows it can also benefit citizens and administrations alike. Merigoux
et al. (2024) are exploring new interfaces to make the legal computations more explainable to
non-expert citizens; Goutagny et al. (2025) present a method to automatically find all interpre-
tation conflicts.

9 Conclusion
In this paper, we advocate for 20 recommendations that will improve the state of public legal
code. We believe our most important takeaway is that implementing the law is inherently
interdisciplinary work between legal experts and computer scientists. It requires a high expertise
in both domains, that can only be reached through a deep cooperation based on mutual trust
and respect.

Acknowledgments. We are grateful to James Barnes, Pierre Goutagny, James Grimmel-
mann, Sarah Lawsky and Denis Merigoux for their helpful comments on early versions of these
recommendations. We thank the whole Catala team for the many discussions which contributed
towards this paper and the valuable feedback we received.

Bibliography
Andrews, P. (2022, October). Designing for legitimacy. https://apolitical.co/solution-articles/

en/designing-for-legitimacy

13

https://apolitical.co/solution-articles/en/designing-for-legitimacy
https://apolitical.co/solution-articles/en/designing-for-legitimacy

Bellotti, M. (2021). Kill it with fire: Manage aging computer systems (and future proof modern
ones). No Starch Press.

Bench-Capon, T. J., & Coenen, F. P. (1992). Isomorphism and legal knowledge based systems.
Artificial Intelligence and Law, 1 (1), 65–86. https://doi.org/10.1007/BF00118479

Bouras, C., Kokkinos, V., & Tseliou, G. (2013). Methodology for public administrators for
selecting between open source and proprietary software. Telematics Informatics, 30 (2),
100–110. https://doi.org/10.1016/J.TELE.2012.03.001

Bouwmeester, M. (2023). System failure in the digital welfare state: Exploring parliamentary
and judicial control in the dutch childcare benefits scandal. Recht der Werkelijkheid,
44 (2), 13–37. https://doi.org/10.5553/RdW/138064242023044002003

Bozeman, B. (2003). Risk, reform and organizational culture: The case of IRS tax systems
modernization. International Public Management Journal, 6 (2), 117–144. https://doi.
org/10.1016/S0723-1318(04)13008-9

Brewka, G., & Eiter, T. (2000). Prioritizing default logic. In Intellectics and computational logic:
Papers in honor of wolfgang bibel (pp. 27–45). Springer. https://doi.org/10.1007/978-
94-015-9383-0_3

CADA. (1978). Commission d’accès aux documents administratifs. https://www.cada.fr/
Catala, P. (1998). Le droit à l’épreuve du numérique: Jus ex machina. PUF.
Chignard, S., & Guerry, B. (2019). Guide des algorithmes publics. https://etalab.github.io/

algorithmes-publics/guide.html
Chignard, S., & Penicaud, S. (2019). With great power comes great responsibility: Keeping public

sector algorithms accountable. https://github.com/etalab/algorithmes-publics/blob/
master/20190611_WorkingPaper_PSAAccountability_Etalab.pdf

Conseil Constitutionnel. (2018, June). Decision 2018-765 DC, ğ71. https://www.conseil-consti
tutionnel.fr/decision/2018/2018765DC.htm#numero-considerant-71

Cowlishaw, M. F. (2003). Decimal floating-point: Algorism for computers. 16th IEEE Sympo-
sium on Computer Arithmetic (Arith-16 2003), 15-18 June 2003, Santiago de Com-
postela, Spain, 104–111. https://doi.org/10.1109/ARITH.2003.1207666

Direction Interministérielle du Numérique. (2023). Les codes sources du secteur public. https:
//code.gouv.fr/sources/

Diver, L. (2021). Interpreting the rule(s) of code: Performance, performativity, and production.
https://law.mit.edu/pub/interpretingtherulesofcode/release/4

Dutch Data Protection Authority. (2020). Werkwijze belastingdienst in strijd met de wet en
discriminerend. https://autoriteitpersoonsgegevens.nl/actueel/werkwijze-belastingdien
st-in-strijd-met-de-wet-en-discriminerend

Escher, N., & Banovic, N. (2020). Exposing error in poverty management technology: A method
for auditing government benefits screening tools. Proc. ACM Hum. Comput. Interact.,
4 (CSCW), 064:1–064:20. https://doi.org/10.1145/3392874

Escher, N., Bilik, J., Banovic, N., & Green, B. (2024). Code-ifying the law: How disciplinary
divides afflict the development of legal software. Proc. ACM Hum. Comput. Interact.,
8 (CSCW2), 1–37. https://doi.org/10.1145/3686937

European Parliament and European Council. (2016). GDPR recital 71. https://eur-lex.europa.
eu/eli/reg/2016/679/oj/eng

European Parliament and European Council. (2022). European union digital decade policy pro-
gramme 2030. https://eur-lex.europa.eu/eli/dec/2022/2481/oj

Gesbert, L., Lawsky, S., & Merigoux, D. (2024, January). Catala implementation of section 121
of US tax code. https://github.com/CatalaLang/catala-examples/blob/36055e91fdd
936eac56d747cd40012dcd58f0403/us_tax_code/section_121.catala_en

Goutagny, P., Fromherz, A., & Monat, R. (2025). Cutecat: Concolic execution for computational
law. ESOP 2025, 15695, 31–61. https://doi.org/10.1007/978-3-031-91121-7_2

14

https://doi.org/10.1007/BF00118479
https://doi.org/10.1016/J.TELE.2012.03.001
https://doi.org/10.5553/RdW/138064242023044002003
https://doi.org/10.1016/S0723-1318(04)13008-9
https://doi.org/10.1016/S0723-1318(04)13008-9
https://doi.org/10.1007/978-94-015-9383-0_3
https://doi.org/10.1007/978-94-015-9383-0_3
https://www.cada.fr/
https://etalab.github.io/algorithmes-publics/guide.html
https://etalab.github.io/algorithmes-publics/guide.html
https://github.com/etalab/algorithmes-publics/blob/master/20190611_WorkingPaper_PSAAccountability_Etalab.pdf
https://github.com/etalab/algorithmes-publics/blob/master/20190611_WorkingPaper_PSAAccountability_Etalab.pdf
https://www.conseil-constitutionnel.fr/decision/2018/2018765DC.htm#numero-considerant-71
https://www.conseil-constitutionnel.fr/decision/2018/2018765DC.htm#numero-considerant-71
https://doi.org/10.1109/ARITH.2003.1207666
https://code.gouv.fr/sources/
https://code.gouv.fr/sources/
https://law.mit.edu/pub/interpretingtherulesofcode/release/4
https://autoriteitpersoonsgegevens.nl/actueel/werkwijze-belastingdienst-in-strijd-met-de-wet-en-discriminerend
https://autoriteitpersoonsgegevens.nl/actueel/werkwijze-belastingdienst-in-strijd-met-de-wet-en-discriminerend
https://doi.org/10.1145/3392874
https://doi.org/10.1145/3686937
https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng
https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng
https://eur-lex.europa.eu/eli/dec/2022/2481/oj
https://github.com/CatalaLang/catala-examples/blob/36055e91fdd936eac56d747cd40012dcd58f0403/us_tax_code/section_121.catala_en
https://github.com/CatalaLang/catala-examples/blob/36055e91fdd936eac56d747cd40012dcd58f0403/us_tax_code/section_121.catala_en
https://doi.org/10.1007/978-3-031-91121-7_2

Granlund, T., & GMP Development Team. (2015). Gnu mp 6.0 multiple precision arithmetic
library. https://gmplib.org/

Guitton, C., Druta, V., Landuyt, D. V., Bellemans, J., Tamò-Larrieux, A., & Mayer, S. (2025).
A validation study of frameworks for responsible automatically processable regulation.
AI & SOCIETY. https://doi.org/10.1007/s00146-025-02479-4

Hoffmann-Riem, W. (2020). Legal technology/computational law: Preconditions, opportunities
and risks. Journal of Cross-disciplinary Research in Computational Law, 1. https://
journalcrcl.org/crcl/article/view/7

Huttner, L., & Merigoux, D. (2022). Catala: Moving Towards the Future of Legal Expert Sys-
tems. Artificial Intelligence and Law. https://doi.org/10.1007/s10506-022-09328-5

Irani, Z., Abril-Jimenez, R., Weerakkody, V., Omar, A., & Sivarajah, U. (2023). The impact
of legacy systems on digital transformation in european public administration: Lesson
learned from a multi case analysis. Gov. Inf. Q., 40 (1), 101784. https://doi.org/10.
1016/J.GIQ.2022.101784

Lawsky, S. B. (2017). A logic for statutes. Fla. Tax Rev., 21, 60. https://doi.org/10.2139/ssrn.
3088206

Legifrance. (2016, October). Article 2, loi nř 2016-1321 du 7 octobre 2016 pour une république
numérique. https://www.legifrance.gouv.fr/jorf/article_jo/JORFARTI000033202948

Legifrance. (2018). Alinéa 2, loi nř 78-17 du 6 janvier 1978 relative à l’informatique, aux
fichiers et aux libertés. https://www.legifrance.gouv.fr/loda/article_lc/LEGIART
I000037823131

Legifrance. (2019, September). Article d823-20 du code de la construction et de l’habitation.
https://www.legifrance.gouv.fr/codes/article_lc/LEGIARTI000038878895

Merigoux, D., Alauzen, M., Banuls, J., Gesbert, L., & Rolley, É. (2024, January). De la trans-
parence à l’explicabilité automatisée des algorithmes : comprendre les obstacles infor-
matiques, juridiques et organisationnels (tech. rep. No. RR-9535). INRIA Paris. https:
//inria.hal.science/hal-04391612

Merigoux, D., Alauzen, M., & Slimani, L. (2023). Rules, Computation and Politics. Scruti-
nizing Unnoticed Programming Choices in French Housing Benefits. Journal of Cross-
disciplinary Research in Computational Law, 2 (1), 23. https://inria.hal.science/hal-
03712130

Merigoux, D., Chataing, N., & Protzenko, J. (2021). Catala: A programming language for the
law. Proc. ACM Program. Lang., 5 (ICFP), 1–29. https://doi.org/10.1145/3473582

Merigoux, D., Monat, R., & Protzenko, J. (2021). A modern compiler for the French tax code.
In A. Smith, D. Demange, & R. Gupta (Eds.), CC’21 (pp. 71–82). ACM. https://doi.
org/10.1145/3446804.3446850

Mockler, P. (2018). The phoenix pay problem: Working toward a solution. Senate Canada. https:
//publications.gc.ca/pub?id=9.859900&sl=0

Mohun, J., & Roberts, A. (2020). Cracking the code: Rulemaking for humans and machines.
https://doi.org/10.1787/3afe6ba5-en

Monat, R., Fromherz, A., & Merigoux, D. (2024). Formalizing Date Arithmetic and Statically
Detecting Ambiguities for the Law. ESOP’24, 14577, 421–450. https://doi.org/10.1007/
978-3-031-57267-8_16

Muller, J., Brunie, N., de Dinechin, F., Jeannerod, C., Joldes, M., Lefèvre, V., Melquiond, G.,
Revol, N., & Torres, S. (2018). Handbook of floating-point arithmetic (2nd ed.) Springer.
https://doi.org/10.1007/978-3-319-76526-6

Organisation for Economic Co-operation and Development. (2020). Tax administration 3.0: The
digital transformation of tax administration. OECD. https://doi.org/10.1787/ca274cc5-
en

15

https://gmplib.org/
https://doi.org/10.1007/s00146-025-02479-4
https://journalcrcl.org/crcl/article/view/7
https://journalcrcl.org/crcl/article/view/7
https://doi.org/10.1007/s10506-022-09328-5
https://doi.org/10.1016/J.GIQ.2022.101784
https://doi.org/10.1016/J.GIQ.2022.101784
https://doi.org/10.2139/ssrn.3088206
https://doi.org/10.2139/ssrn.3088206
https://www.legifrance.gouv.fr/jorf/article_jo/JORFARTI000033202948
https://www.legifrance.gouv.fr/loda/article_lc/LEGIARTI000037823131
https://www.legifrance.gouv.fr/loda/article_lc/LEGIARTI000037823131
https://www.legifrance.gouv.fr/codes/article_lc/LEGIARTI000038878895
https://inria.hal.science/hal-04391612
https://inria.hal.science/hal-04391612
https://inria.hal.science/hal-03712130
https://inria.hal.science/hal-03712130
https://doi.org/10.1145/3473582
https://doi.org/10.1145/3446804.3446850
https://doi.org/10.1145/3446804.3446850
https://publications.gc.ca/pub?id=9.859900&sl=0
https://publications.gc.ca/pub?id=9.859900&sl=0
https://doi.org/10.1787/3afe6ba5-en
https://doi.org/10.1007/978-3-031-57267-8_16
https://doi.org/10.1007/978-3-031-57267-8_16
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1787/ca274cc5-en
https://doi.org/10.1787/ca274cc5-en

Ranchordas, S., & Scarcella, L. (2021). Automated government for vulnerable citizens: Interme-
diating rights. Wm. & Mary Bill Rts. J., 30, 373. http://wm.billofrightsjournal.org/wp-
content/uploads/2019/05/V30I2_07_RanchordasScarcella.pdf

Redden, J., Brand, J., Sander, I., Warne, H., Grant, A., & White, D. (2022). Automating
public services: Learning from cancelled systems. Cardiff, UK: Data Justice Lab, Cardiff
University. https://carnegieuk.org/publication/automating-public-services-learning-
from-cancelled-systems/

RTCA. (2011). DO-178C, software considerations in airborne systems and equipment certifica-
tion.

Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond, P., & Cory, H. T. (1986).
The british nationality act as a logic program. Commun. ACM, 29 (5), 370–386. https:
//doi.org/10.1145/5689.5920

The Commons Strategies Group. (2012). The wealth of the commons. a world beyond market &
state. Levellers Press. https://wealthofthecommons.org/essay/public-administration-
needs-free-software

Thomas, D., & Hunt, A. (2019). The pragmatic programmer: Your journey to mastery. Addison-
Wesley Professional.

Tizpaz-Niari, S., Monjezi, V., Wagner, M., Darian, S., Reed, K., & Trivedi, A. (2023). Meta-
morphic testing and debugging of tax preparation software. SEIS@ICSE’23, 138–149.
https://doi.org/10.1109/ICSE-SEIS58686.2023.00019

van Eck, M., Lokin, M., Klip, M., Bössenecker, G., Oldeman, C., van Doesburg, R., Klop, A.,
& Gort, S. (2022, July). Legitimaat 1.0.3: A working method for conducting third-party
research into the use of algorithms by a government organization. https : / / minbzk .
github.io/LegitiMaat/

This work is licensed under a Creative Commons “Attribution-NonCommercial
4.0 International” license.

16

http://wm.billofrightsjournal.org/wp-content/uploads/2019/05/V30I2_07_RanchordasScarcella.pdf
http://wm.billofrightsjournal.org/wp-content/uploads/2019/05/V30I2_07_RanchordasScarcella.pdf
https://carnegieuk.org/publication/automating-public-services-learning-from-cancelled-systems/
https://carnegieuk.org/publication/automating-public-services-learning-from-cancelled-systems/
https://doi.org/10.1145/5689.5920
https://doi.org/10.1145/5689.5920
https://wealthofthecommons.org/essay/public-administration-needs-free-software
https://wealthofthecommons.org/essay/public-administration-needs-free-software
https://doi.org/10.1109/ICSE-SEIS58686.2023.00019
https://minbzk.github.io/LegitiMaat/
https://minbzk.github.io/LegitiMaat/
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en

	Introduction
	Be aware of the specificities of implementing computational laws
	Make your implementation abide by the law
	Use the right programming tools
	Ease day-to-day technical development
	Ensure your project will last
	Facilitate public interaction
	Related work
	Conclusion

