
Try-Mopsa:
Relational Static Analysis in Your Pocket⋆

Raphaël Monat1(�)

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Abstract. Static analyzers are complex pieces of software with large
dependencies. They can be difficult to install, which hinders adoption and
creates barriers for students learning static analysis. This work introduces
Try-Mopsa: a scaled-down version of the Mopsa static analysis platform,
compiled into JavaScript to run purely as a client-side application in web
browsers. Try-Mopsa provides a responsive interface that works on both
desktop and mobile devices. Try-Mopsa features all the core components
of Mopsa. In particular, it supports relational numerical domains. We
present the interface, changes and adaptations required to have a pure
JavaScript version of Mopsa. We envision Try-Mopsa as a convenient
platform for onboarding or teaching purposes.

Keywords: Static Analysis · Abstract Interpretation · Usability · Teach-
ing.

1 Introduction

Static analyzers are complex pieces of software, usually building on a large num-
ber of dependencies. For example, the Mopsa static analysis platform [18] re-
quires among others: two parsing libraries (Menhir and libclang), the Zarith li-
brary to handle arbitrary precision arithmetic, and the Apron library to handle
relational numerical domains. When facing a large number of users (or students),
there is always a chance to encounter some installation issues. While good pack-
aging or containerization can certainly limit those, installing a new tool still
consumes time and resources. In any case, the installation process hinders both
testing and adoption of new static analysis tools.

One remedy to this issue is to provide zero-install ways to try a software,
for example by enabling tool usage through a web browser. This article presents
Try-Mopsa, a scaled-down version of the Mopsa static analysis platform that
runs entirely as a client-side web application. It relies on a responsive interface to
support a wide variety of devices (from smartphones to computers), and supports
all core features of Mopsa, including relational domains and an interactive engine
acting as an abstract debugger. Try-Mopsa is available online [30]. Thanks to
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its purely client-side implementation, Try-Mopsa scales to a large number of
concurrent users.

We provide a brief overview of Mopsa in Section 2. Then, we describe in
Section 3 how we adapted Mopsa to make it runnable in a web page. Section 4
provides an overview of the resulting web interface, Section 5 evaluates several
features of the implementation, and Section 6 discusses related work.

2 A Brief Overview of Mopsa

Mopsa is a Modular Open Platform for Static Analysis, rooted within the ab-
stract interpretation framework [6]. It aims at providing a convenient platform
for static analysis learners, developers and users. Although Mopsa explores some
new perspectives for the design of static analyzers, it is stable and precise enough
to be on-par with state-of-the-art academic program analyzers participating to
the Software-Verification Competition [2, 33]. Journault et al. [18] describe the
core of Mopsa’s principles, and Monat [29, Chapter 3] provides an in-depth in-
troduction to Mopsa’s architecture. We briefly describe three features of interest
for this article:

Multilanguage support. Mopsa supports the analysis of multiple program-
ming languages. Currently, it supports the analysis of an in-house toy im-
perative language (called “Universal”), of C [39] and of Python [31, 34].

User-defined analysis combination. As an analysis platform, Mopsa offers
a wide variety of abstract domains to choose from. Users define in a configu-
ration file which abstract domains they want to enable, and how they should
be combined (reduced product, ...).

Tailored for relational domains. Relational domains greatly improve the ex-
pressiveness of analyses by being able to infer constraints between variables.
In addition, every abstract domain can introduce ghost variables and add
constraints on those, which can be handled by an underlying relational do-
main.

We show in Figure 1 the main components of Mopsa, and describe them
below. All components are supported by Try-Mopsa, except those filled in gray.
We discuss unsupported components and potential replacements in Section 3.

The frontend handles the parsing of a program into an abstract syntax tree
(AST). As we mentioned above, Mopsa currently supports the analysis of three
programming languages.

The analysis builder takes a JSON configuration file describing the choice
of abstract domains and their combinators, makes sure it is valid, and enables
the corresponding abstract domains in the toplevel analysis. It also sets passed
options (either for the framework or for the enabled abstract domains).

Once the parsing is done and the abstract domains are combined according to
the specified configuration, the toplevel analysis starts. It runs the combination
of chosen abstract domains, such as iterators handling loops and function calls,
trace and state partitioning, numerical abstract domains and string abstractions.
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Fig. 1. Components of Mopsa. All components are supported by Try-Mopsa, except
those filled in gray.

Different user interfaces are offered by Mopsa. The automatic interface is the
classic one: the analysis runs to completion and then displays the results. The in-
teractive engine lets user navigate the abstract execution of the program, where
analysis computations are performed on-the-fly accordingly. This interface acts
as a gdb-like abstract debugger, and supports breakpoints, program navigation,
printing of abstract states, ... The DAP interface provides a debug adapter pro-
tocol interface, similar to the interactive engine but allowing interactions with
IDEs supporting this protocol. Monat et al. [32, Section 5] describes the former
two interfaces in more details.
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3 Try-Mopsa: Under the Hood

This section describes the implementation of Try-Mopsa. Section 3.1 focuses on
the backend part, explaining how we adapted Mopsa to be able to compile it to
JavaScript. Section 3.2 shows how this compiled JavaScript is integrated within
a web page to provide a user-friendly interface.

3.1 Compiling Mopsa to JavaScript

According to cloc [8], the current version of Mopsa consists of 87,856 lines of
code. The overwhelming majority of the codebase (89%) is written in OCaml.
We rely on the Js_of_ocaml (JSOO) compiler [46] to compile these components
of Mopsa to JavaScript. This compiler option is selected in the build system as a
drop-in replacement to the standard OCaml compiler creating executables. This
compilation process already supports most Mopsa features, including the parsing
of user-defined analysis combination, fixpoint and interprocedural iterators, heap
and string abstractions, trace and state partitioning.

However, some crucial features of Mopsa rely on external dependencies: we
use Menhir or libclang to parse programs, the Zarith library to handle arbitrary
precision arithmetic, and the Apron library to handle relational numerical do-
mains. We now discuss how these components have been adapted to compile to
JavaScript.

Parsing libraries. Mopsa relies on the Menhir library [40] to implement parsers
for the Universal and the Python programming languages. As Menhir is written
in pure OCaml, JSOO natively supports compiling it to JavaScript.

Try-Mopsa currently does not support C parsing. Indeed, Mopsa depends on
LLVM and its libclang library to parse C programs, and our C parser contains
4,182 lines of C++ glue code. While JSOO can interface with manually written
JavaScript stubs, and some prototype versions of LLVM have been compiled to
WebAssembly, we believe the current level of support for these processes would
require too much manual work.

Arbitrary-precision integer arithmetic. Our integer abstractions (intervals, con-
gruences) rely on arbitrary-precision arithmetic to avoid overflows and unsound-
ness. Mopsa relies on the Zarith [26] library to implement these mathematical
integers. Try-Mopsa makes use of a third-party alternative implementation in
JavaScript of the Zarith interface, called Zarith_stubs_js [14] and natively sup-
ported by the compilation process of JSOO.

Relational Domains. Mopsa depends on the Apron library [17] to support rela-
tional numeric domains such as octagons [24] and polyhedra [7]. However, Apron
abstract domains are written in C/C++: compiling them to JavaScript, just like
our C frontend, would be quite cumbersome. For Try-Mopsa, we chose to re-
place Apron with the alternative Verified Polyhedra Library (VPL) [3]. Given
that some domains of the VPL are pure OCaml implementations, JSOO is able



Try-Mopsa: Relational Static Analysis in Your Pocket 5

to compile it to JavaScript, enabling relational abstract domains to run within
web browsers. We wrote a new VPL wrapper, making it compatible with Mopsa’s
interface, and adding support for the fold/expand operators [12] required by
Mopsa but not built in the VPL.

Floating-point Abstractions. Our current implementation of floating-point inter-
vals sets various rounding modes in the floating-point unit to be sound [23]. Since
this is not supported by JavaScript, these intervals are currently not supported
by Try-Mopsa. Alternative implementations of floating-point intervals, not rely-
ing on specific rounding modes could be developed in future work to alleviate
this limitation.

3.2 Handling Web Interactions

Try-Mopsa is split between a toplevel, handling the page interaction with the
user and a web worker, handling the actual computations of the analysis. Thanks
to this decoupling, the web worker and the page rendering lies within different
threads of the web browser, so longer computations do not freeze the browser’s
rendering process.

Web Worker. The web worker relies primarily on the JavaScript executable
obtained through the process described in the previous section.

The compiled version of Mopsa relies on standard output to interact with the
user. Additionally, the interactive engine reads user commands from the standard
input. We rely on JSOO’s utilities to set up callbacks intercepting any standard
input/output and redirecting them to the toplevel. Thanks to this approach,
Mopsa did not require any modification to work in the browser.

We rely on the virtual filesystem mechanism of JSOO to embed internal files
Mopsa may expect to find during its analysis. This currently concerns Python
stubs for various library modules.

Toplevel. The toplevel renders the initial dynamic elements of the page and
updates them in response to user action.

It uses the Ace editor [42], and the Ezjs_ace bindings [38] to display the
input program and the analysis results. We have extended the Ace editor to
provide syntax highlighting for the Universal language, to allow collapsing of
printed elements within the analysis result, and to render ANSI escape codes in
HTML, as those are used by Mopsa to print in color.

The toplevel also draws a form so that user can select options. The form is
automatically generated from the option metadata encoded within Mopsa (which
are fetched through a query to the web worker). The options depend on which
abstract domains are activated, and thus on the configuration chosen by the user.
The toplevel ensures that the option form is redrawn whenever the configuration
is changed.

When a user starts an analysis, the toplevel creates a web worker to perform
it. The user may choose to interrupt the analysis, in which case the top-level
then signals the web worker to stop.
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Interactive engine. The interactive engine of Mopsa follows an interaction loop
by awaiting user input (in a synchronous, blocking fashion) and providing cor-
responding results. However, web interfaces typically rely on asynchronous pro-
cesses. We explored options such as implementing an asynchronous interactive
engine. This would have required the decoupling of the interactive interface from
the analysis computations, which would have been a large implementation effort
introducing breaking changes. In the end, we chose to rely on the sync-message
[27] JavaScript library enabling synchronous communication between the web
worker to the toplevel, should some user input be required.

4 Try-Mopsa: Interface Overview

The interface of Try-Mopsa is displayed in Figures 2, 4 and 5 and can be
tried online [30]. The interface is responsive, to ensure it can be used on a wide
variety of screens, from smartphones to desktops.

The landing page shown in Figure 2 provides a code editor and displays
analysis results. By default, input programs are written in our toy imperative
language. Users can also switch to the Python analysis if they wish to, and
they can load some example programs. The analysis output consists of abstract
states displayed when the print() instruction is analyzed, as well as a report
on the runtime errors potentially detected by the analyzer. If the interactive
engine has been enabled, the interaction happens in this same box. Note that on
wider screens, the responsive design displays the code editor and analysis results
side-by-side.

In Figure 2, we loaded the example program str_alphabet2.u, reproduced
textually in Figure 3. Note that in the web editor, the definition of to_string,
acting as a cast, is folded to highlight the editor capabilities.

The program starts with the string s, initialized to the letter "a". It then
runs a loop until the number defined by 'a' + i reaches the end of the lower-
case alphabet. Similarly to C, in Universal, characters (between single quotes)
are interpreted as integers through their ASCII code. This loop may stop non-
deterministically at any iteration (line 6). At each loop iteration, the string s
is concatenated (with the @ operator) with the singleton string whose charac-
ter corresponds to the integer 'a' + i. Thus the program non-deterministically
computes a string s among S = {"a", "ab", "abc", . . . , "abc · · ·xyz"}. The as-
sertion at line 14 checks a simpler property: that s belongs S but up to any
permutation of the characters.

Figure 4 shows the configuration editor, letting users specify their choice of
abstract domains and combinators. Similarly to the code editor, users can also
load a configuration from a pre-defined list. We comment on the loaded config-
uration, string_product_relational.json. This configuration features three
notable abstract domains, working together. The string length domain handles
ghost variables representing the length of each string. The string summarization
handles ghost variables representing a summary of the contents of each string,
through the ASCII codes of the contained characters. These two domains are
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Fig. 2. Interface of Try-Mopsa: landing page, with program editor and analysis output.

1 str to_string(int i) { /* omitted */ }
6 str s = "a";
7 int i = 1;
8 int j;
9 while('a' + i <= 'z') {

10 if (rand(0, 1)) break;
11 s = s @ to_string('a' + i);
12 i = i + 1;
13 }
14 print();
15 j = rand(0, |s|-1);
16 // For all 0 <= j < |s|, s[j]-'a' < |s|
17 // which means s in {a, (a+b)^2, (a+b+c)^3, ...}
18 assert(s[j]-'a' < |s|);

Fig. 3. Program str_alphabet2.u used as example.
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Fig. 4. Interface of Try-Mopsa: configuration editor, allowing to specify the choice of
abstract domains and their combinators.

defined as a reduced product as they infer complementary pieces of information.
Finally, a relational numerical domain is enabled. It handles the constraints
passed by the aforementioned string domains, which allows it to infer relations
between those different ghost variables, and program variables.

The result of analyzing str_alphabet2.u using string_product_relation-
al.json is displayed at the bottom of Figure 2. In this case, Try-Mopsa is able
to prove the complex assertion at line 18, which mixes information about the
contents and the length of string s. Let us briefly comment on the abstract state
inferred after the loop and printed at lines 1-9 of the analysis result in Figure 2.
We can see that the relational domain inferred equality between the length of the
string s and the integer variable i. We can further notice an interesting relation
between the contents of s (ord(s)) and its length: ’a’ ≤ ord(s) ≤ ’a’+ len(s)−1.
This invariant has been obtained thanks to the cooperation between the string
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Fig. 5. Interface of Try-Mopsa: option selection.

abstract domains and the relational abstract domain. Note that the second in-
equality is exactly the invariant proved by Mopsa at line 18.

Figure 5 displays various analysis options to tweak the analysis. As we men-
tioned in the previous section, these options are dynamically generated by the
toplevel, depending on which abstract domains are activated. In this example,
the first five options are defined at the framework level, while the last four op-
tions customize the behavior of the loop iterator. Note that the options argument
can be selected through different interfaces depending on the expected output
(e.g., choice among fixed list, integer, string).

To further improve its usability, Try-Mopsa can also be used as a progressive
web app, meaning that it can be installed locally on a device and run without
relying on the network. In addition, a share button (in the top-right corner of
Figure 2) lets users share their current program, configuration and option choices
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Table 1. Comparison of analysis times with relational abstract domains enabled. The
mean and standard deviation have been computed over 10 runs.

Program Binary execution Firefox execution

attributes.py 0.09s ± 0.00 0.52s ± 0.03
fspath.py 0.09s ± 0.00 0.49s ± 0.02
list.py 0.15s ± 0.01 0.88s ± 0.03
loop.py 0.12s ± 0.01 0.72s ± 0.03
recency.py 0.08s ± 0.01 0.63s ± 0.03

str_alphabet.u 0.04s ± 0.01 0.20s ± 0.01
str_alphabet2.u 0.23s ± 0.01 0.81s ± 0.01
str_conc_loop.u 0.08s ± 0.01 0.29s ± 0.01
str_conc_loop2.u 0.04s ± 0.01 0.15s ± 0.01

by encoding it into a URL. This can be useful for example to simplify practical
sessions where no manual loading is required.

5 Implementation Discussion

This section briefly discusses the implementation size, maintainability, perfor-
mance and browser compatibility of Try-Mopsa.

Implementation. The webpage, including extensions of the Ace editor for our
purposes, is written in around 1,500 lines of HTML, CSS and JavaScript. The
toplevel and worker of Try-Mopsa consist of 670 lines of OCaml code. The imple-
mentation within Mopsa of the VPL binder adds around 500 lines of OCaml code.
Once compiled with full optimizations, the worker and all the Mopsa code relying
on it are compiled into a relatively compact JavaScript file of 3.1 megabytes.

Maintainability. We argue that the implementation of Try-Mopsa is maintain-
able with respect to the standard implementation of Mopsa. Indeed, Try-Mopsa
does not introduce breaking changes, meaning future development can be shared
in the same repository.

In addition, most components of Mopsa were reused as-is, thanks in partic-
ular to the reuse of the same input-output loop as a terminal user of Mopsa
would. The only major component that has been added is the support for rela-
tional abstract domains through the VPL library. This implementation provides
adequate results on the toy examples we provide along with Try-Mopsa.

Performance. The goal of Try-Mopsa is to ease tool demonstrations and testing
without installation, where raw analysis performance is not a priority. Neverthe-
less, we compared the analysis times between the natively generated executable,
and the same code running in Firefox. We ran this comparison on the toy, default
examples of Try-Mopsa, with configurations using relational abstract domains.
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We show in Table 1 the nine most significant programs to analyze. On average,
Try-Mopsa is five times slower than native binary execution. While this is a
noticeable slowdown, we believe the analysis times – below one second – make
Try-Mopsa still usable for demonstration or teaching purposes. Future work
could focus on using JSOO’s recent WebAssembly code generation features to
obtain more efficient code.

Browser compatibility. We use the Playwright framework [43] to test the browser
compatibility of Try-Mopsa. The tests run multiple usage scenarios and check
the results are visible and as expected. These tests run during our continuous
integration process and have helped identify several usability issues, particularly
on mobile browsers. We currently test three desktop browsers (Chrome, Firefox,
Safari), and two mobile browsers (Chrome, Safari), using different viewports cor-
responding to popular iPhone and Android devices, either used in portrait or in
landscape orientation. There are currently 5 test scenarios, resulting in 35 tests
depending on the chosen browser and viewport. Additional tests ensure that all
examples programs can be analyzed in the relevant example configurations pro-
posed in our interface. We currently provide 13 examples programs for Universal
(resp. 5 for Python), and 11 configurations for Universal (resp. 6 for Python).

6 Related Work

In previous works, developers relied on server-side computations to provide web
interfaces for static analyzers relying on relational numerical domains. This in-
cludes for example Interproc [15, 16], Banal [22, 25] and FuncTion [44, 45]. While
client-server implementations require less work to adapt a static analyzer to the
web, these implementations raise more security concerns and can be less scalable
in the number of users. In addition, these implementations need to maintain a
compatible server service over the years. This proves to be difficult: at the time
of writing, the majority of these approaches are no longer operational.

More recently, pure client-side web interfaces have been developed for static
analyzers. These scale much better with the number of concurrent users, and
their “only” dependency is a web browser – one of the most widespread pieces of
software. Lermusiaux and Montagu [19, 20] provide a demo web interface for their
Salto analyzer of OCaml code, following previous demonstrators accompanying
works around the static analysis of functional languages [35, 36]. In their BINSEC
[9] tutorial at PLDI 2025, Recoules and Bardin [41] provide a web tutorial where
users can choose between running BINSEC in CLI or running analysis scenarios
directly in their browser. To the best of our knowledge, Try-Mopsa is the only
web interface supporting the analysis of multiple languages, relational domains,
and an interactive exploration of the analysis.

Negrini et al. [37] describe how they use their static analysis platform LiSA
within their static analysis courses. Students are tasked with installing LiSA, and
implementing several simple abstract domains. Try-Mopsa aims at providing
a zero-install static analyzer relying on complex abstract domains – such as
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polyhedra – to illustrate how such a tool works. Evaluating the impact of Try-
Mopsa on real teaching cohorts is left as future work.

Following studies about developer use of static analyzers [5, 11], there are
quite a few works discussing interfaces for static analyzers. MagpieBridge [21]
aims at simplifying the display of analysis results within IDEs supporting the
Language-Server Protocol. Several interfaces have also been developed to debug
static analyzers [10], provide an abstract debugger [13], or mix concrete and
abstract debuggers [28].

Outside of the static analysis community, Canou et al. [4] describe the tech-
nical components requiring to run an OCaml MOOC who attracted thousands
of learners. It relies in particular on a pure client-side development environment
avoiding installation woes students could otherwise face. Arias et al. [1] also
provide a pure JavaScript version for the Rocq proof assistant, which aims at
improving literate programming formatting and reducing installation burdens,
in an educational context.

7 Conclusion

This article introduced Try-Mopsa, a pure, client-side implementation of Mopsa
running in the browser or as a progressive web app. Try-Mopsa supports all
the main core components of Mopsa, including support for relational numerical
domains and its abstract debugger. Try-Mopsa is designed to work on a wide
range of devices, from smartphones to desktop, thanks to a responsive design and
continuous testing of the support of popular browsers and various resolutions.
We envision Try-Mopsa to be a convenient tool to demonstrate static analysis
capabilities, for teaching purposes or more generally to attract new users.
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