
Try-Mopsa
Relational Static Analysis in Your Pocket

Raphaël Monat
rmonat.fr

VMCAI’26
12 January 2026

rmonat.fr

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
mopsa.lip6.fr or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

I Allows users to choose their composition of abstract domains
I Eases development of highly expressive relational static analyses
I Can be used as an experimentation platform

• Supports analysis of C, Python
OCaml WIP, cf. Milla Valnet’s talk at TPSA (14:22)

• Academically competitive on real-world benchmarks (SV-Comp)

1

mopsa.lip6.fr

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
mopsa.lip6.fr or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

I Allows users to choose their composition of abstract domains

I Eases development of highly expressive relational static analyses
I Can be used as an experimentation platform

• Supports analysis of C, Python
OCaml WIP, cf. Milla Valnet’s talk at TPSA (14:22)

• Academically competitive on real-world benchmarks (SV-Comp)

1

mopsa.lip6.fr

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
mopsa.lip6.fr or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

I Allows users to choose their composition of abstract domains
I Eases development of highly expressive relational static analyses

I Can be used as an experimentation platform

• Supports analysis of C, Python
OCaml WIP, cf. Milla Valnet’s talk at TPSA (14:22)

• Academically competitive on real-world benchmarks (SV-Comp)

1

mopsa.lip6.fr

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
mopsa.lip6.fr or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

I Allows users to choose their composition of abstract domains
I Eases development of highly expressive relational static analyses
I Can be used as an experimentation platform

• Supports analysis of C, Python
OCaml WIP, cf. Milla Valnet’s talk at TPSA (14:22)

• Academically competitive on real-world benchmarks (SV-Comp)

1

mopsa.lip6.fr

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
mopsa.lip6.fr or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

I Allows users to choose their composition of abstract domains
I Eases development of highly expressive relational static analyses
I Can be used as an experimentation platform

• Supports analysis of C, Python
OCaml WIP, cf. Milla Valnet’s talk at TPSA (14:22)

• Academically competitive on real-world benchmarks (SV-Comp)

1

mopsa.lip6.fr

Mopsa

Modular Open Platform for Static Analysis [Jou+19]
mopsa.lip6.fr or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

I Allows users to choose their composition of abstract domains
I Eases development of highly expressive relational static analyses
I Can be used as an experimentation platform

• Supports analysis of C, Python
OCaml WIP, cf. Milla Valnet’s talk at TPSA (14:22)

• Academically competitive on real-world benchmarks (SV-Comp)

1

mopsa.lip6.fr

Static analyzers are complex pieces of software!

apron

ocamlbuild

mlgmpidl

arg-complete

cppo

>= 1.1.0

menhir

dune

>= 2.8.0

qcheck-core

>= 2.8.0

yojson

>= 2.7

seq

>= 0.2.2

zarith

ocamlfind

conf-pkg-config

conf-gmp

clang libclang-cpp-dev libclang-dev llvm-dev

base-threads base-unix

bigarray-compat

>= 1.0

camlidl

ocaml

>= 4.05

conf-gmp-paths

ez-conf-liblibgmp-dev

conf-mpfr-paths

libmpfr-dev

conf-perl

perl

>= 2.0

>= 4.08

conf-findutils

mopsa

>= v0.9.15>= 0.2.1 >= 20200525>= 0.26 >= 1.6.0 >= 1.10

>= 4.08

>= 3.08.0

>= 4.07.0

!= 1.10

>= 1.5.6

pkg-config

findutilsGenerated with odep [Saa24] 2

Static analyzers are complex pieces of software!

apron

ocamlbuild

mlgmpidl

arg-complete

cppo

>= 1.1.0

menhir

dune

>= 2.8.0

qcheck-core

>= 2.8.0

yojson

>= 2.7

seq

>= 0.2.2

zarith

ocamlfind

conf-pkg-config

conf-gmp

clang libclang-cpp-dev libclang-dev llvm-dev

base-threads base-unix

bigarray-compat

>= 1.0

camlidl

ocaml

>= 4.05

conf-gmp-paths

ez-conf-liblibgmp-dev

conf-mpfr-paths

libmpfr-dev

conf-perl

perl

>= 2.0

>= 4.08

conf-findutils

mopsa

>= v0.9.15>= 0.2.1 >= 20200525>= 0.26 >= 1.6.0 >= 1.10

>= 4.08

>= 3.08.0

>= 4.07.0

!= 1.10

>= 1.5.6

pkg-config

findutilsGenerated with odep [Saa24] 2

Try-Mopsa

Try-Mopsa: a scaled down version of Mopsa running purely in browsers.

I Zero-install
I Supports core features of Mopsa
I Features responsive interface supporting smartphones to computers
I Scales in number of users (purely client-side)
I Can be convenient for onboarding or teaching

3

Try-Mopsa

Try-Mopsa: a scaled down version of Mopsa running purely in browsers.

I Zero-install

I Supports core features of Mopsa
I Features responsive interface supporting smartphones to computers
I Scales in number of users (purely client-side)
I Can be convenient for onboarding or teaching

3

Try-Mopsa

Try-Mopsa: a scaled down version of Mopsa running purely in browsers.

I Zero-install
I Supports core features of Mopsa

I Features responsive interface supporting smartphones to computers
I Scales in number of users (purely client-side)
I Can be convenient for onboarding or teaching

3

Try-Mopsa

Try-Mopsa: a scaled down version of Mopsa running purely in browsers.

I Zero-install
I Supports core features of Mopsa
I Features responsive interface supporting smartphones to computers

I Scales in number of users (purely client-side)
I Can be convenient for onboarding or teaching

3

Try-Mopsa

Try-Mopsa: a scaled down version of Mopsa running purely in browsers.

I Zero-install
I Supports core features of Mopsa
I Features responsive interface supporting smartphones to computers
I Scales in number of users (purely client-side)

I Can be convenient for onboarding or teaching

3

Try-Mopsa

Try-Mopsa: a scaled down version of Mopsa running purely in browsers.

I Zero-install
I Supports core features of Mopsa
I Features responsive interface supporting smartphones to computers
I Scales in number of users (purely client-side)
I Can be convenient for onboarding or teaching

3

Outline

1 Under the Hood of Try-Mopsa

2 Interface Overview

3 Implementation Discussion

4 Conclusion

4

Under the Hood of Try-Mopsa

Overview of Mopsa
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals String Powerset

Relational Domain . . .

User Interface

Automatic Interactive DAP

5

Overview of Mopsa
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals String Powerset

Relational Domain . . .

User Interface

Automatic Interactive DAP

5

Overview of Mopsa
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals String Powerset

Relational Domain . . .

User Interface

Automatic Interactive DAP

5

Overview of Mopsa
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals String Powerset

Relational Domain . . .

User Interface

Automatic Interactive DAP 5

Compiling Mopsa to JavaScript

Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals

String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Gray = unsupported by Try-Mopsa.

Rely on Js_of_ocaml [VB14]
89% of Mopsa’s codebase is written in OCaml

Parsing libraries
Menhir

libclang: too much manual work for now

Arbitrary-precision integer arithmetic
Zarith Zarith_stubs_js

Relational domains
Apron [JM09] VPL [Bou+18] w/ extensions

Floating-point
Our implementation needs to set rounding
modes

Not supported in JavaScript/WebAssembly.

6

Compiling Mopsa to JavaScript
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals

String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Gray = unsupported by Try-Mopsa.

Rely on Js_of_ocaml [VB14]
89% of Mopsa’s codebase is written in OCaml

Parsing libraries
Menhir

libclang: too much manual work for now

Arbitrary-precision integer arithmetic
Zarith Zarith_stubs_js

Relational domains
Apron [JM09] VPL [Bou+18] w/ extensions

Floating-point
Our implementation needs to set rounding
modes

Not supported in JavaScript/WebAssembly.

6

Compiling Mopsa to JavaScript
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals

String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Gray = unsupported by Try-Mopsa.

Rely on Js_of_ocaml [VB14]

Parsing libraries
Menhir

libclang: too much manual work for now

Arbitrary-precision integer arithmetic
Zarith Zarith_stubs_js

Relational domains
Apron [JM09] VPL [Bou+18] w/ extensions

Floating-point
Our implementation needs to set rounding
modes

Not supported in JavaScript/WebAssembly.

6

Compiling Mopsa to JavaScript
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals

String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Gray = unsupported by Try-Mopsa.

Rely on Js_of_ocaml [VB14]

Parsing libraries
Menhir

libclang: too much manual work for now

Arbitrary-precision integer arithmetic
Zarith Zarith_stubs_js

Relational domains
Apron [JM09] VPL [Bou+18] w/ extensions

Floating-point
Our implementation needs to set rounding
modes

Not supported in JavaScript/WebAssembly.

6

Compiling Mopsa to JavaScript
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals

String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Gray = unsupported by Try-Mopsa.

Rely on Js_of_ocaml [VB14]

Parsing libraries

Arbitrary-precision integer arithmetic
Zarith Zarith_stubs_js

Relational domains
Apron [JM09] VPL [Bou+18] w/ extensions

Floating-point
Our implementation needs to set rounding
modes

Not supported in JavaScript/WebAssembly.

6

Compiling Mopsa to JavaScript
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals

String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Gray = unsupported by Try-Mopsa.

Rely on Js_of_ocaml [VB14]

Parsing libraries

Arbitrary-precision integer arithmetic
Zarith Zarith_stubs_js

Relational domains
Apron [JM09] VPL [Bou+18] w/ extensions

Floating-point
Our implementation needs to set rounding
modes

Not supported in JavaScript/WebAssembly.

6

Compiling Mopsa to JavaScript
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals

String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Gray = unsupported by Try-Mopsa.

Rely on Js_of_ocaml [VB14]

Parsing libraries

Arbitrary-precision integer arithmetic

Relational domains
Apron [JM09] VPL [Bou+18] w/ extensions

Floating-point
Our implementation needs to set rounding
modes

Not supported in JavaScript/WebAssembly.

6

Compiling Mopsa to JavaScript
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals

String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Gray = unsupported by Try-Mopsa.

Rely on Js_of_ocaml [VB14]

Parsing libraries

Arbitrary-precision integer arithmetic

Relational domains
Apron [JM09] VPL [Bou+18] w/ extensions

Floating-point
Our implementation needs to set rounding
modes

Not supported in JavaScript/WebAssembly.

6

Compiling Mopsa to JavaScript
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals

String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Gray = unsupported by Try-Mopsa.

Rely on Js_of_ocaml [VB14]

Parsing libraries

Arbitrary-precision integer arithmetic

Relational domains

Floating-point
Our implementation needs to set rounding
modes

Not supported in JavaScript/WebAssembly.

6

Compiling Mopsa to JavaScript
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Gray = unsupported by Try-Mopsa.

Rely on Js_of_ocaml [VB14]

Parsing libraries

Arbitrary-precision integer arithmetic

Relational domains

Floating-point
Our implementation needs to set rounding
modes

Not supported in JavaScript/WebAssembly.

6

Handling Web Interactions

Toplevel

I Handles user actions

I Ace editor

with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!

=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Handling Web Interactions

Toplevel

I Handles user actions
I Ace editor

with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!

=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Handling Web Interactions

Toplevel

I Handles user actions
I Ace editor with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!
=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Handling Web Interactions

Toplevel

I Handles user actions
I Ace editor with custom
highlighting and ANSI rendering

I Dynamic option generation

I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!
=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Handling Web Interactions

Toplevel

I Handles user actions
I Ace editor with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!
=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Handling Web Interactions

Toplevel

I Handles user actions
I Ace editor with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!
=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Handling Web Interactions

Toplevel

I Handles user actions
I Ace editor with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS

I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!
=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Handling Web Interactions

Toplevel

I Handles user actions
I Ace editor with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!
=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Handling Web Interactions

Toplevel

I Handles user actions
I Ace editor with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!
=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Handling Web Interactions

Toplevel

I Handles user actions
I Ace editor with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!
=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Handling Web Interactions

Toplevel

I Handles user actions
I Ace editor with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop

I But web interfaces require asynchronous interfaces!
=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Handling Web Interactions

Toplevel

I Handles user actions
I Ace editor with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!

=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Handling Web Interactions

Toplevel

I Handles user actions
I Ace editor with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!
=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)

7

Interface Overview

Demo!

Running example

1 str s = "a";
2 int i = 1;
3 while('a' + i <= 'z') {
4 if (rand(0, 1)) break;
5 s = s @ to_string('a' + i);
6 i = i + 1;
7 }
8 // s ∈ {"a", "ab", "abc", ..., "abc· · ·xy", "abc· · ·xyz"}
9 assert(0 <= j < |s| =⇒ s[j] - 'a' < |s|);

=⇒ try-mopsa.rmonat.fr

8

https://try-mopsa.rmonat.fr/?content=N4IgDgTg9g5iBcIDOAXCACFUD6qIEsA7GACiJXXwEp1gAdQ9J9PdDAXnTpAENuBuBszYBtAAwBddJ3yDGzCAFMUAVwiMIcgL4NWSaV14CG5SgYCMc0wCs5AdwAW%2BADaKSAch7v0AajMAeTncAL3caenl8ADN0EggeQgATEjEAGnRzKhoAIyUeAGs5Jn1OfQABTBw8IlJPbz9qIrMZXwztBkhyEio5awN4pJT0gB8kYYBaTLkAemn0ADEoDB5nZ3QxdED0Pv90UeH0pBFrCXG6zb2xhln0R3wAYwd0AFtFBP19IloedJIeH2yVAAegAmX7-bI%2Be7AgDM6QAdIidIQeEgkIoICgSEcTmcvBd9j0uIQQKkQPcoIQoggQBFhNxnAkYCoeDBFNx4IYVIR8AA3DFIFbcVJCZjcRJQZ48Igc2ii4RMbhIOz4FCPWUieUK4Q3ACSKAxPCwECQWu1ipA3L5ApW8NVhuNSHhkFg8WewrN5u4Vv5Jtt9vijrthDQPBd9w98nNYstPN9gucdoNgaWTucUCgYFNpM92u9cZticZxHh2RULhQRGzIqj0a5Bb9iYDRtTweT4eDziINUjdZjPsLSYdratKANqF7ffr1sb8KwAE94dViNhXMQUA5J32bgA5FSvAj3dA8bJ4Hj3SuU3MKulT%2BkgQiUpTOWX5mcJ%2BGEfcYh7w3krFRFCdcgMX-ZxgJDRQ2Qgbhr2EZFowkLVkWRUkQEzFAkBpEAtCAA

Demo!

Running example

1 str s = "a";
2 int i = 1;
3 while('a' + i <= 'z') {
4 if (rand(0, 1)) break;
5 s = s @ to_string('a' + i);
6 i = i + 1;
7 }
8 // s ∈ {"a", "ab", "abc", ..., "abc· · ·xy", "abc· · ·xyz"}
9 assert(0 <= j < |s| =⇒ s[j] - 'a' < |s|);

=⇒ try-mopsa.rmonat.fr

8

https://try-mopsa.rmonat.fr/?content=N4IgDgTg9g5iBcIDOAXCACFUD6qIEsA7GACiJXXwEp1gAdQ9J9PdDAXnTpAENuBuBszYBtAAwBddJ3yDGzCAFMUAVwiMIcgL4NWSaV14CG5SgYCMc0wCs5AdwAW%2BADaKSAch7v0AajMAeTncAL3caenl8ADN0EggeQgATEjEAGnRzKhoAIyUeAGs5Jn1OfQABTBw8IlJPbz9qIrMZXwztBkhyEio5awN4pJT0gB8kYYBaTLkAemn0ADEoDB5nZ3QxdED0Pv90UeH0pBFrCXG6zb2xhln0R3wAYwd0AFtFBP19IloedJIeH2yVAAegAmX7-bI%2Be7AgDM6QAdIidIQeEgkIoICgSEcTmcvBd9j0uIQQKkQPcoIQoggQBFhNxnAkYCoeDBFNx4IYVIR8AA3DFIFbcVJCZjcRJQZ48Igc2ii4RMbhIOz4FCPWUieUK4Q3ACSKAxPCwECQWu1ipA3L5ApW8NVhuNSHhkFg8WewrN5u4Vv5Jtt9vijrthDQPBd9w98nNYstPN9gucdoNgaWTucUCgYFNpM92u9cZticZxHh2RULhQRGzIqj0a5Bb9iYDRtTweT4eDziINUjdZjPsLSYdratKANqF7ffr1sb8KwAE94dViNhXMQUA5J32bgA5FSvAj3dA8bJ4Hj3SuU3MKulT%2BkgQiUpTOWX5mcJ%2BGEfcYh7w3krFRFCdcgMX-ZxgJDRQ2Qgbhr2EZFowkLVkWRUkQEzFAkBpEAtCAA

Demo!

Running example

1 str s = "a";
2 int i = 1;
3 while('a' + i <= 'z') {
4 if (rand(0, 1)) break;
5 s = s @ to_string('a' + i);
6 i = i + 1;
7 }
8 // s ∈ {"a", "ab", "abc", ..., "abc· · ·xy", "abc· · ·xyz"}
9 assert(0 <= j < |s| =⇒ s[j] - 'a' < |s|);

=⇒ try-mopsa.rmonat.fr

8

https://try-mopsa.rmonat.fr/?content=N4IgDgTg9g5iBcIDOAXCACFUD6qIEsA7GACiJXXwEp1gAdQ9J9PdDAXnTpAENuBuBszYBtAAwBddJ3yDGzCAFMUAVwiMIcgL4NWSaV14CG5SgYCMc0wCs5AdwAW%2BADaKSAch7v0AajMAeTncAL3caenl8ADN0EggeQgATEjEAGnRzKhoAIyUeAGs5Jn1OfQABTBw8IlJPbz9qIrMZXwztBkhyEio5awN4pJT0gB8kYYBaTLkAemn0ADEoDB5nZ3QxdED0Pv90UeH0pBFrCXG6zb2xhln0R3wAYwd0AFtFBP19IloedJIeH2yVAAegAmX7-bI%2Be7AgDM6QAdIidIQeEgkIoICgSEcTmcvBd9j0uIQQKkQPcoIQoggQBFhNxnAkYCoeDBFNx4IYVIR8AA3DFIFbcVJCZjcRJQZ48Igc2ii4RMbhIOz4FCPWUieUK4Q3ACSKAxPCwECQWu1ipA3L5ApW8NVhuNSHhkFg8WewrN5u4Vv5Jtt9vijrthDQPBd9w98nNYstPN9gucdoNgaWTucUCgYFNpM92u9cZticZxHh2RULhQRGzIqj0a5Bb9iYDRtTweT4eDziINUjdZjPsLSYdratKANqF7ffr1sb8KwAE94dViNhXMQUA5J32bgA5FSvAj3dA8bJ4Hj3SuU3MKulT%2BkgQiUpTOWX5mcJ%2BGEfcYh7w3krFRFCdcgMX-ZxgJDRQ2Qgbhr2EZFowkLVkWRUkQEzFAkBpEAtCAA

Demo!

Running example

1 str s = "a";
2 int i = 1;
3 while('a' + i <= 'z') {
4 if (rand(0, 1)) break;
5 s = s @ to_string('a' + i);
6 i = i + 1;
7 }
8 // s ∈ {"a", "ab", "abc", ..., "abc· · ·xy", "abc· · ·xyz"}
9 assert(0 <= j < |s| =⇒ s[j] - 'a' < |s|);

=⇒ try-mopsa.rmonat.fr

8

https://try-mopsa.rmonat.fr/?content=N4IgDgTg9g5iBcIDOAXCACFUD6qIEsA7GACiJXXwEp1gAdQ9J9PdDAXnTpAENuBuBszYBtAAwBddJ3yDGzCAFMUAVwiMIcgL4NWSaV14CG5SgYCMc0wCs5AdwAW%2BADaKSAch7v0AajMAeTncAL3caenl8ADN0EggeQgATEjEAGnRzKhoAIyUeAGs5Jn1OfQABTBw8IlJPbz9qIrMZXwztBkhyEio5awN4pJT0gB8kYYBaTLkAemn0ADEoDB5nZ3QxdED0Pv90UeH0pBFrCXG6zb2xhln0R3wAYwd0AFtFBP19IloedJIeH2yVAAegAmX7-bI%2Be7AgDM6QAdIidIQeEgkIoICgSEcTmcvBd9j0uIQQKkQPcoIQoggQBFhNxnAkYCoeDBFNx4IYVIR8AA3DFIFbcVJCZjcRJQZ48Igc2ii4RMbhIOz4FCPWUieUK4Q3ACSKAxPCwECQWu1ipA3L5ApW8NVhuNSHhkFg8WewrN5u4Vv5Jtt9vijrthDQPBd9w98nNYstPN9gucdoNgaWTucUCgYFNpM92u9cZticZxHh2RULhQRGzIqj0a5Bb9iYDRtTweT4eDziINUjdZjPsLSYdratKANqF7ffr1sb8KwAE94dViNhXMQUA5J32bgA5FSvAj3dA8bJ4Hj3SuU3MKulT%2BkgQiUpTOWX5mcJ%2BGEfcYh7w3krFRFCdcgMX-ZxgJDRQ2Qgbhr2EZFowkLVkWRUkQEzFAkBpEAtCAA

Demo!

Running example

1 str s = "a";
2 int i = 1;
3 while('a' + i <= 'z') {
4 if (rand(0, 1)) break;
5 s = s @ to_string('a' + i);
6 i = i + 1;
7 }
8 // s ∈ {"a", "ab", "abc", ..., "abc· · ·xy", "abc· · ·xyz"}
9 assert(0 <= j < |s| =⇒ s[j] - 'a' < |s|);

=⇒ try-mopsa.rmonat.fr

8

https://try-mopsa.rmonat.fr/?content=N4IgDgTg9g5iBcIDOAXCACFUD6qIEsA7GACiJXXwEp1gAdQ9J9PdDAXnTpAENuBuBszYBtAAwBddJ3yDGzCAFMUAVwiMIcgL4NWSaV14CG5SgYCMc0wCs5AdwAW%2BADaKSAch7v0AajMAeTncAL3caenl8ADN0EggeQgATEjEAGnRzKhoAIyUeAGs5Jn1OfQABTBw8IlJPbz9qIrMZXwztBkhyEio5awN4pJT0gB8kYYBaTLkAemn0ADEoDB5nZ3QxdED0Pv90UeH0pBFrCXG6zb2xhln0R3wAYwd0AFtFBP19IloedJIeH2yVAAegAmX7-bI%2Be7AgDM6QAdIidIQeEgkIoICgSEcTmcvBd9j0uIQQKkQPcoIQoggQBFhNxnAkYCoeDBFNx4IYVIR8AA3DFIFbcVJCZjcRJQZ48Igc2ii4RMbhIOz4FCPWUieUK4Q3ACSKAxPCwECQWu1ipA3L5ApW8NVhuNSHhkFg8WewrN5u4Vv5Jtt9vijrthDQPBd9w98nNYstPN9gucdoNgaWTucUCgYFNpM92u9cZticZxHh2RULhQRGzIqj0a5Bb9iYDRtTweT4eDziINUjdZjPsLSYdratKANqF7ffr1sb8KwAE94dViNhXMQUA5J32bgA5FSvAj3dA8bJ4Hj3SuU3MKulT%2BkgQiUpTOWX5mcJ%2BGEfcYh7w3krFRFCdcgMX-ZxgJDRQ2Qgbhr2EZFowkLVkWRUkQEzFAkBpEAtCAA

Demo!

Running example

1 str s = "a";
2 int i = 1;
3 while('a' + i <= 'z') {
4 if (rand(0, 1)) break;
5 s = s @ to_string('a' + i);
6 i = i + 1;
7 }
8 // s ∈ {"a", "ab", "abc", ..., "abc· · ·xy", "abc· · ·xyz"}
9 assert(0 <= j < |s| =⇒ s[j] - 'a' < |s|);

=⇒ try-mopsa.rmonat.fr

8

https://try-mopsa.rmonat.fr/?content=N4IgDgTg9g5iBcIDOAXCACFUD6qIEsA7GACiJXXwEp1gAdQ9J9PdDAXnTpAENuBuBszYBtAAwBddJ3yDGzCAFMUAVwiMIcgL4NWSaV14CG5SgYCMc0wCs5AdwAW%2BADaKSAch7v0AajMAeTncAL3caenl8ADN0EggeQgATEjEAGnRzKhoAIyUeAGs5Jn1OfQABTBw8IlJPbz9qIrMZXwztBkhyEio5awN4pJT0gB8kYYBaTLkAemn0ADEoDB5nZ3QxdED0Pv90UeH0pBFrCXG6zb2xhln0R3wAYwd0AFtFBP19IloedJIeH2yVAAegAmX7-bI%2Be7AgDM6QAdIidIQeEgkIoICgSEcTmcvBd9j0uIQQKkQPcoIQoggQBFhNxnAkYCoeDBFNx4IYVIR8AA3DFIFbcVJCZjcRJQZ48Igc2ii4RMbhIOz4FCPWUieUK4Q3ACSKAxPCwECQWu1ipA3L5ApW8NVhuNSHhkFg8WewrN5u4Vv5Jtt9vijrthDQPBd9w98nNYstPN9gucdoNgaWTucUCgYFNpM92u9cZticZxHh2RULhQRGzIqj0a5Bb9iYDRtTweT4eDziINUjdZjPsLSYdratKANqF7ffr1sb8KwAE94dViNhXMQUA5J32bgA5FSvAj3dA8bJ4Hj3SuU3MKulT%2BkgQiUpTOWX5mcJ%2BGEfcYh7w3krFRFCdcgMX-ZxgJDRQ2Qgbhr2EZFowkLVkWRUkQEzFAkBpEAtCAA

Demo!

Running example

1 str s = "a";
2 int i = 1;
3 while('a' + i <= 'z') {
4 if (rand(0, 1)) break;
5 s = s @ to_string('a' + i);
6 i = i + 1;
7 }
8 // s ∈ {"a", "ab", "abc", ..., "abc· · ·xy", "abc· · ·xyz"}
9 assert(0 <= j < |s| =⇒ s[j] - 'a' < |s|);

=⇒ try-mopsa.rmonat.fr

8

https://try-mopsa.rmonat.fr/?content=N4IgDgTg9g5iBcIDOAXCACFUD6qIEsA7GACiJXXwEp1gAdQ9J9PdDAXnTpAENuBuBszYBtAAwBddJ3yDGzCAFMUAVwiMIcgL4NWSaV14CG5SgYCMc0wCs5AdwAW%2BADaKSAch7v0AajMAeTncAL3caenl8ADN0EggeQgATEjEAGnRzKhoAIyUeAGs5Jn1OfQABTBw8IlJPbz9qIrMZXwztBkhyEio5awN4pJT0gB8kYYBaTLkAemn0ADEoDB5nZ3QxdED0Pv90UeH0pBFrCXG6zb2xhln0R3wAYwd0AFtFBP19IloedJIeH2yVAAegAmX7-bI%2Be7AgDM6QAdIidIQeEgkIoICgSEcTmcvBd9j0uIQQKkQPcoIQoggQBFhNxnAkYCoeDBFNx4IYVIR8AA3DFIFbcVJCZjcRJQZ48Igc2ii4RMbhIOz4FCPWUieUK4Q3ACSKAxPCwECQWu1ipA3L5ApW8NVhuNSHhkFg8WewrN5u4Vv5Jtt9vijrthDQPBd9w98nNYstPN9gucdoNgaWTucUCgYFNpM92u9cZticZxHh2RULhQRGzIqj0a5Bb9iYDRtTweT4eDziINUjdZjPsLSYdratKANqF7ffr1sb8KwAE94dViNhXMQUA5J32bgA5FSvAj3dA8bJ4Hj3SuU3MKulT%2BkgQiUpTOWX5mcJ%2BGEfcYh7w3krFRFCdcgMX-ZxgJDRQ2Qgbhr2EZFowkLVkWRUkQEzFAkBpEAtCAA

Demo!

Running example

1 str s = "a";
2 int i = 1;
3 while('a' + i <= 'z') {
4 if (rand(0, 1)) break;
5 s = s @ to_string('a' + i);
6 i = i + 1;
7 }
8 // s ∈ {"a", "ab", "abc", ..., "abc· · ·xy", "abc· · ·xyz"}
9 assert(0 <= j < |s| =⇒ s[j] - 'a' < |s|);

=⇒ try-mopsa.rmonat.fr
8

https://try-mopsa.rmonat.fr/?content=N4IgDgTg9g5iBcIDOAXCACFUD6qIEsA7GACiJXXwEp1gAdQ9J9PdDAXnTpAENuBuBszYBtAAwBddJ3yDGzCAFMUAVwiMIcgL4NWSaV14CG5SgYCMc0wCs5AdwAW%2BADaKSAch7v0AajMAeTncAL3caenl8ADN0EggeQgATEjEAGnRzKhoAIyUeAGs5Jn1OfQABTBw8IlJPbz9qIrMZXwztBkhyEio5awN4pJT0gB8kYYBaTLkAemn0ADEoDB5nZ3QxdED0Pv90UeH0pBFrCXG6zb2xhln0R3wAYwd0AFtFBP19IloedJIeH2yVAAegAmX7-bI%2Be7AgDM6QAdIidIQeEgkIoICgSEcTmcvBd9j0uIQQKkQPcoIQoggQBFhNxnAkYCoeDBFNx4IYVIR8AA3DFIFbcVJCZjcRJQZ48Igc2ii4RMbhIOz4FCPWUieUK4Q3ACSKAxPCwECQWu1ipA3L5ApW8NVhuNSHhkFg8WewrN5u4Vv5Jtt9vijrthDQPBd9w98nNYstPN9gucdoNgaWTucUCgYFNpM92u9cZticZxHh2RULhQRGzIqj0a5Bb9iYDRtTweT4eDziINUjdZjPsLSYdratKANqF7ffr1sb8KwAE94dViNhXMQUA5J32bgA5FSvAj3dA8bJ4Hj3SuU3MKulT%2BkgQiUpTOWX5mcJ%2BGEfcYh7w3krFRFCdcgMX-ZxgJDRQ2Qgbhr2EZFowkLVkWRUkQEzFAkBpEAtCAA

Implementation Discussion

Implementation

I Mopsa ' 87kLOC

I Try-Mopsa

• 1,500 lines of HTML/CSS/JS
• 670 lines of OCaml (toplevel/worker)
• 500 lines of OCaml (VPL)
• Compiled, optimized size: 3.1 megabytes
• No breaking changes

9

Implementation

I Mopsa ' 87kLOC
I Try-Mopsa

• 1,500 lines of HTML/CSS/JS
• 670 lines of OCaml (toplevel/worker)
• 500 lines of OCaml (VPL)
• Compiled, optimized size: 3.1 megabytes
• No breaking changes

9

Implementation

I Mopsa ' 87kLOC
I Try-Mopsa

• 1,500 lines of HTML/CSS/JS

• 670 lines of OCaml (toplevel/worker)
• 500 lines of OCaml (VPL)
• Compiled, optimized size: 3.1 megabytes
• No breaking changes

9

Implementation

I Mopsa ' 87kLOC
I Try-Mopsa

• 1,500 lines of HTML/CSS/JS
• 670 lines of OCaml (toplevel/worker)

• 500 lines of OCaml (VPL)
• Compiled, optimized size: 3.1 megabytes
• No breaking changes

9

Implementation

I Mopsa ' 87kLOC
I Try-Mopsa

• 1,500 lines of HTML/CSS/JS
• 670 lines of OCaml (toplevel/worker)
• 500 lines of OCaml (VPL)

• Compiled, optimized size: 3.1 megabytes
• No breaking changes

9

Implementation

I Mopsa ' 87kLOC
I Try-Mopsa

• 1,500 lines of HTML/CSS/JS
• 670 lines of OCaml (toplevel/worker)
• 500 lines of OCaml (VPL)
• Compiled, optimized size: 3.1 megabytes

• No breaking changes

9

Implementation

I Mopsa ' 87kLOC
I Try-Mopsa

• 1,500 lines of HTML/CSS/JS
• 670 lines of OCaml (toplevel/worker)
• 500 lines of OCaml (VPL)
• Compiled, optimized size: 3.1 megabytes
• No breaking changes

9

Performance

Program Binary execution Firefox execution

attributes.py 0.09s ± 0.00 0.52s ± 0.03
fspath.py 0.09s ± 0.00 0.49s ± 0.02
list.py 0.15s ± 0.01 0.88s ± 0.03
loop.py 0.12s ± 0.01 0.72s ± 0.03
recency.py 0.08s ± 0.01 0.63s ± 0.03

str_alphabet.u 0.04s ± 0.01 0.20s ± 0.01
str_alphabet2.u 0.23s ± 0.01 0.81s ± 0.01
str_conc_loop.u 0.08s ± 0.01 0.29s ± 0.01
str_conc_loop2.u 0.04s ± 0.01 0.15s ± 0.01

I 5× slowdown compared to native binary

I Raw performance is not a priority

I Still reasonable analysis times

10

Performance

Program Binary execution Firefox execution

attributes.py 0.09s ± 0.00 0.52s ± 0.03
fspath.py 0.09s ± 0.00 0.49s ± 0.02
list.py 0.15s ± 0.01 0.88s ± 0.03
loop.py 0.12s ± 0.01 0.72s ± 0.03
recency.py 0.08s ± 0.01 0.63s ± 0.03

str_alphabet.u 0.04s ± 0.01 0.20s ± 0.01
str_alphabet2.u 0.23s ± 0.01 0.81s ± 0.01
str_conc_loop.u 0.08s ± 0.01 0.29s ± 0.01
str_conc_loop2.u 0.04s ± 0.01 0.15s ± 0.01

I 5× slowdown compared to native binary

I Raw performance is not a priority

I Still reasonable analysis times

10

Browser compatibility

Playwright framework to asses the browser compatibility of Try-Mopsa

Conformance tests
5 tests x (3 desktop browsers + 2 mobiles browsers x 2 viewports)

Identified several rendering issues on mobile

Additional tests
Universal: 13 programs x 11 configurations

Python: 5 programs x 6 configurations

11

Browser compatibility

Playwright framework to asses the browser compatibility of Try-Mopsa

Conformance tests
5 tests x (3 desktop browsers + 2 mobiles browsers x 2 viewports)

Identified several rendering issues on mobile

Additional tests
Universal: 13 programs x 11 configurations

Python: 5 programs x 6 configurations

11

Browser compatibility (II)

12

Conclusion

Related Work

I Server-side: Interproc [Jea09], Banal [Min12], FuncTion [Urb15]
Less adaptation required, but maintenance and security issues

I Client-side: Ciao Prolog [MPH22], Salto (OCaml) [LM25], Binsec tutorial [RB25]
Try-Mopsa supports relational domains and interactive user input

I LiSA for teaching [Neg+24]
I Interaction with IDEs [LDB19]
I Works between concrete and abstract debuggers [Do+20; Hol+24; MVR23]

13

Related Work

I Server-side: Interproc [Jea09], Banal [Min12], FuncTion [Urb15]
Less adaptation required, but maintenance and security issues

I Client-side: Ciao Prolog [MPH22], Salto (OCaml) [LM25], Binsec tutorial [RB25]
Try-Mopsa supports relational domains and interactive user input

I LiSA for teaching [Neg+24]
I Interaction with IDEs [LDB19]
I Works between concrete and abstract debuggers [Do+20; Hol+24; MVR23]

13

Related Work

I Server-side: Interproc [Jea09], Banal [Min12], FuncTion [Urb15]
Less adaptation required, but maintenance and security issues

I Client-side: Ciao Prolog [MPH22], Salto (OCaml) [LM25], Binsec tutorial [RB25]
Try-Mopsa supports relational domains and interactive user input

I LiSA for teaching [Neg+24]

I Interaction with IDEs [LDB19]
I Works between concrete and abstract debuggers [Do+20; Hol+24; MVR23]

13

Related Work

I Server-side: Interproc [Jea09], Banal [Min12], FuncTion [Urb15]
Less adaptation required, but maintenance and security issues

I Client-side: Ciao Prolog [MPH22], Salto (OCaml) [LM25], Binsec tutorial [RB25]
Try-Mopsa supports relational domains and interactive user input

I LiSA for teaching [Neg+24]
I Interaction with IDEs [LDB19]

I Works between concrete and abstract debuggers [Do+20; Hol+24; MVR23]

13

Related Work

I Server-side: Interproc [Jea09], Banal [Min12], FuncTion [Urb15]
Less adaptation required, but maintenance and security issues

I Client-side: Ciao Prolog [MPH22], Salto (OCaml) [LM25], Binsec tutorial [RB25]
Try-Mopsa supports relational domains and interactive user input

I LiSA for teaching [Neg+24]
I Interaction with IDEs [LDB19]
I Works between concrete and abstract debuggers [Do+20; Hol+24; MVR23]

13

Conclusion

Program Configuration Options

Frontend

Universal Python C

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Automatic Interactive DAP

Gray = unsupported by Try-Mopsa.

I Pure JS version of Mopsa

I Supports polyhedra, abstract
debugger

I Works on smartphones and
desktops alike

I Useful for demo or lightweight
teaching purposes

try-mopsa.rmonat.fr

14

try-mopsa.rmonat.fr

Conclusion
Program Configuration Options

Frontend

Universal Python C

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Automatic Interactive DAP

Gray = unsupported by Try-Mopsa.

I Pure JS version of Mopsa
I Supports polyhedra, abstract
debugger

I Works on smartphones and
desktops alike

I Useful for demo or lightweight
teaching purposes

try-mopsa.rmonat.fr

14

try-mopsa.rmonat.fr

Conclusion
Program Configuration Options

Frontend

Universal Python C

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Automatic Interactive DAP

Gray = unsupported by Try-Mopsa.

I Pure JS version of Mopsa
I Supports polyhedra, abstract
debugger

I Works on smartphones and
desktops alike

I Useful for demo or lightweight
teaching purposes

try-mopsa.rmonat.fr

14

try-mopsa.rmonat.fr

Conclusion
Program Configuration Options

Frontend

Universal Python C

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Automatic Interactive DAP

Gray = unsupported by Try-Mopsa.

I Pure JS version of Mopsa
I Supports polyhedra, abstract
debugger

I Works on smartphones and
desktops alike

I Useful for demo or lightweight
teaching purposes

try-mopsa.rmonat.fr

14

try-mopsa.rmonat.fr

Conclusion
Program Configuration Options

Frontend

Universal Python C

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Automatic Interactive DAP

Gray = unsupported by Try-Mopsa.

I Pure JS version of Mopsa
I Supports polyhedra, abstract
debugger

I Works on smartphones and
desktops alike

I Useful for demo or lightweight
teaching purposes

try-mopsa.rmonat.fr

14

try-mopsa.rmonat.fr

References – I

[Bou+18] Sylvain Boulmé et al. “The Verified Polyhedron Library: an Overview”.
In: IEEE, 2018, pp. 9–17. doi: 10.1109/SYNASC.2018.00014.

[Do+20] Lisa Nguyen Quang Do et al. “Debugging Static Analysis”. In:
IEEE Trans. Software Eng. 7 (2020), pp. 697–709. doi:
10.1109/TSE.2018.2868349.

[Hol+24] Karoliine Holter et al. “Abstract Debuggers: Exploring Program
Behaviors using Static Analysis Results”. In: ed. by Jonathan Edwards and
Marcel Taeumel. ACM, 2024, pp. 130–146. doi: 10.1145/3689492.3690053.

https://doi.org/10.1109/SYNASC.2018.00014
https://doi.org/10.1109/TSE.2018.2868349
https://doi.org/10.1145/3689492.3690053

References – II

[Jea09] Bertrand Jeannet. Web Interface for the Interproc Analyzer. 2009. url:
https://pop-
art.inrialpes.fr/interproc/interprocweb.cgi.html.

[JM09] Bertrand Jeannet and Antoine Miné. “Apron: A Library of Numerical
Abstract Domains for Static Analysis”. In: Springer, 2009, pp. 661–667.

[Jou+19] M. Journault et al. “Combinations of reusable abstract domains for a
multilingual static analyzer”. In: New York, USA, July 2019, pp. 1–17.

https://pop-art.inrialpes.fr/interproc/interprocweb.cgi.html
https://pop-art.inrialpes.fr/interproc/interprocweb.cgi.html

References – III

[LDB19] Linghui Luo, Julian Dolby, and Eric Bodden. “MagpieBridge: A General
Approach to Integrating Static Analyses into IDEs and Editors (Tool
Insights Paper)”. In: ed. by Alastair F. Donaldson. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019, 21:1–21:25. doi:
10.4230/LIPICS.ECOOP.2019.21.

[LM25] Pierre Lermusiaux and Benoît Montagu.
Web Demo for the Salto Analyzer. 2025. url:
https://salto.gitlabpages.inria.fr/demo/salto.html.

[Min12] Antoine Miné.
Web Interface for Sufficient Condition Polyhedral Prototype Analyzer.
2012. url: https://mine.perso.lip6.fr/banal/.

https://doi.org/10.4230/LIPICS.ECOOP.2019.21
https://salto.gitlabpages.inria.fr/demo/salto.html
https://mine.perso.lip6.fr/banal/

References – IV

[Moj23] Alex Mojaki. sync-message. Version 0.0.12. Oct. 2023.

[MPH22] Jose F. Morales, Guillermo García Pradales, and Manuel Hermenegildo.
Ciao Prolog Playgrund. 2022. url:
https://ciao-lang.org/playground/.

[MVR23] Mats Van Molle, Bram Vandenbogaerde, and Coen De Roover.
“Cross-Level Debugging for Static Analysers”. In: ed. by João Saraiva,
Thomas Degueule, and Elizabeth Scott. ACM, 2023, pp. 138–148. doi:
10.1145/3623476.3623512.

https://ciao-lang.org/playground/
https://doi.org/10.1145/3623476.3623512

References – V

[Neg+24] Luca Negrini et al. “Teaching Through Practice: Advanced Static
Analysis with LiSA”. In: ed. by Emil Sekerinski and Leila Ribeiro. Lecture
Notes in Computer Science. Springer, 2024, pp. 43–57. doi:
10.1007/978-3-031-71379-8_3.

[RB25] Frédéric Recoules and Sébastien Bardin. BINSEC Tutorial at PLDI’25.
2025. url: https://binsec.github.io/tutorial-pldi2025/.

[Saa24] Simmo Saan.
Odep: Dependency graphs for OCaml modules, libraries and packages.
Version 0.2.1. Apr. 2024.

[Urb15] Caterina Urban. Web Interface for FuncTion. 2015. url:
https://www.di.ens.fr/~urban/FuncTion.html.

https://doi.org/10.1007/978-3-031-71379-8_3
https://binsec.github.io/tutorial-pldi2025/
https://www.di.ens.fr/~urban/FuncTion.html

References – VI

[VB14] Jérôme Vouillon and Vincent Balat. “From bytecode to JavaScript: the
Js_of_ocaml compiler”. In: Softw. Pract. Exp. 8 (2014), pp. 951–972. doi:
10.1002/SPE.2187.

https://doi.org/10.1002/SPE.2187

	Under the Hood of Try-Mopsa
	

	Interface Overview
	

	Implementation Discussion
	

	Conclusion
	

	Appendix
	References

