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Mopsa

Modular Open Platform for Static Analysis [Jou+19]
mopsa.lip6.fr or opam install mopsa

Started by ERC Consolidator Grant (2016-2021) of Antoine Miné (LIP6, SU)

I Allows users to choose their composition of abstract domains
I Eases development of highly expressive relational static analyses
I Can be used as an experimentation platform

• Supports analysis of C, Python
OCaml WIP, cf. Milla Valnet’s talk at TPSA (14:22)

• Academically competitive on real-world benchmarks (SV-Comp)
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Static analyzers are complex pieces of software!
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>= 2.8.0

qcheck-core

>= 2.8.0

yojson

>= 2.7

seq

>= 0.2.2

zarith

ocamlfind

conf-pkg-config

conf-gmp

clang libclang-cpp-dev libclang-dev llvm-dev

base-threads base-unix

bigarray-compat

>= 1.0

camlidl

ocaml

>= 4.05

conf-gmp-paths

ez-conf-liblibgmp-dev

conf-mpfr-paths

libmpfr-dev

conf-perl

perl

>= 2.0

>= 4.08

conf-findutils

mopsa

>= v0.9.15>= 0.2.1 >= 20200525>= 0.26 >= 1.6.0 >= 1.10

>= 4.08

>= 3.08.0
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pkg-config
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Try-Mopsa

Try-Mopsa: a scaled down version of Mopsa running purely in browsers.

I Zero-install
I Supports core features of Mopsa
I Features responsive interface supporting smartphones to computers
I Scales in number of users (purely client-side)
I Can be convenient for onboarding or teaching
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Outline

1 Under the Hood of Try-Mopsa

2 Interface Overview

3 Implementation Discussion

4 Conclusion
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Under the Hood of Try-Mopsa



Overview of Mopsa
Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals String Powerset

Relational Domain . . .

User Interface

Automatic Interactive DAP
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Compiling Mopsa to JavaScript

Program

Frontend

Universal Python C

Configuration Options

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals

String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Gray = unsupported by Try-Mopsa.

Rely on Js_of_ocaml [VB14]
89% of Mopsa’s codebase is written in OCaml

Parsing libraries
Menhir

libclang: too much manual work for now

Arbitrary-precision integer arithmetic
Zarith Zarith_stubs_js

Relational domains
Apron [JM09] VPL [Bou+18] w/ extensions

Floating-point
Our implementation needs to set rounding
modes

Not supported in JavaScript/WebAssembly.
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Handling Web Interactions

Toplevel

I Handles user actions

I Ace editor

with custom
highlighting and ANSI rendering

I Dynamic option generation
I Triggers/interrupts web worker

Web Worker

I Contains Mopsa in JS
I Intercepts std{in,out},
forwards them to the toplevel

I Relies on virtual filesystem to
embed stubs and configurations

Handling Interactive User Inputs

I Mopsa CLI: synchronous, blocking interaction loop
I But web interfaces require asynchronous interfaces!

=⇒ Rely on sync-message [Moj23] (low-level synchronous comm.)
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Interface Overview



Demo!

Running example

1 str s = "a";
2 int i = 1;
3 while('a' + i <= 'z') {
4 if (rand(0, 1)) break;
5 s = s @ to_string('a' + i);
6 i = i + 1;
7 }
8 // s ∈ {"a", "ab", "abc", ..., "abc· · ·xy", "abc· · ·xyz"}
9 assert(0 <= j < |s| =⇒ s[j] - 'a' < |s|);

=⇒ try-mopsa.rmonat.fr

8

https://try-mopsa.rmonat.fr/?content=N4IgDgTg9g5iBcIDOAXCACFUD6qIEsA7GACiJXXwEp1gAdQ9J9PdDAXnTpAENuBuBszYBtAAwBddJ3yDGzCAFMUAVwiMIcgL4NWSaV14CG5SgYCMc0wCs5AdwAW%2BADaKSAch7v0AajMAeTncAL3caenl8ADN0EggeQgATEjEAGnRzKhoAIyUeAGs5Jn1OfQABTBw8IlJPbz9qIrMZXwztBkhyEio5awN4pJT0gB8kYYBaTLkAemn0ADEoDB5nZ3QxdED0Pv90UeH0pBFrCXG6zb2xhln0R3wAYwd0AFtFBP19IloedJIeH2yVAAegAmX7-bI%2Be7AgDM6QAdIidIQeEgkIoICgSEcTmcvBd9j0uIQQKkQPcoIQoggQBFhNxnAkYCoeDBFNx4IYVIR8AA3DFIFbcVJCZjcRJQZ48Igc2ii4RMbhIOz4FCPWUieUK4Q3ACSKAxPCwECQWu1ipA3L5ApW8NVhuNSHhkFg8WewrN5u4Vv5Jtt9vijrthDQPBd9w98nNYstPN9gucdoNgaWTucUCgYFNpM92u9cZticZxHh2RULhQRGzIqj0a5Bb9iYDRtTweT4eDziINUjdZjPsLSYdratKANqF7ffr1sb8KwAE94dViNhXMQUA5J32bgA5FSvAj3dA8bJ4Hj3SuU3MKulT%2BkgQiUpTOWX5mcJ%2BGEfcYh7w3krFRFCdcgMX-ZxgJDRQ2Qgbhr2EZFowkLVkWRUkQEzFAkBpEAtCAA
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Implementation

I Mopsa ' 87kLOC

I Try-Mopsa

• 1,500 lines of HTML/CSS/JS
• 670 lines of OCaml (toplevel/worker)
• 500 lines of OCaml (VPL)
• Compiled, optimized size: 3.1 megabytes
• No breaking changes

9



Implementation

I Mopsa ' 87kLOC
I Try-Mopsa

• 1,500 lines of HTML/CSS/JS
• 670 lines of OCaml (toplevel/worker)
• 500 lines of OCaml (VPL)
• Compiled, optimized size: 3.1 megabytes
• No breaking changes

9



Implementation

I Mopsa ' 87kLOC
I Try-Mopsa

• 1,500 lines of HTML/CSS/JS

• 670 lines of OCaml (toplevel/worker)
• 500 lines of OCaml (VPL)
• Compiled, optimized size: 3.1 megabytes
• No breaking changes

9



Implementation

I Mopsa ' 87kLOC
I Try-Mopsa

• 1,500 lines of HTML/CSS/JS
• 670 lines of OCaml (toplevel/worker)

• 500 lines of OCaml (VPL)
• Compiled, optimized size: 3.1 megabytes
• No breaking changes

9



Implementation

I Mopsa ' 87kLOC
I Try-Mopsa

• 1,500 lines of HTML/CSS/JS
• 670 lines of OCaml (toplevel/worker)
• 500 lines of OCaml (VPL)

• Compiled, optimized size: 3.1 megabytes
• No breaking changes

9



Implementation

I Mopsa ' 87kLOC
I Try-Mopsa

• 1,500 lines of HTML/CSS/JS
• 670 lines of OCaml (toplevel/worker)
• 500 lines of OCaml (VPL)
• Compiled, optimized size: 3.1 megabytes

• No breaking changes

9



Implementation

I Mopsa ' 87kLOC
I Try-Mopsa

• 1,500 lines of HTML/CSS/JS
• 670 lines of OCaml (toplevel/worker)
• 500 lines of OCaml (VPL)
• Compiled, optimized size: 3.1 megabytes
• No breaking changes

9



Performance

Program Binary execution Firefox execution

attributes.py 0.09s ± 0.00 0.52s ± 0.03
fspath.py 0.09s ± 0.00 0.49s ± 0.02
list.py 0.15s ± 0.01 0.88s ± 0.03
loop.py 0.12s ± 0.01 0.72s ± 0.03
recency.py 0.08s ± 0.01 0.63s ± 0.03

str_alphabet.u 0.04s ± 0.01 0.20s ± 0.01
str_alphabet2.u 0.23s ± 0.01 0.81s ± 0.01
str_conc_loop.u 0.08s ± 0.01 0.29s ± 0.01
str_conc_loop2.u 0.04s ± 0.01 0.15s ± 0.01

I 5× slowdown compared to native binary

I Raw performance is not a priority

I Still reasonable analysis times
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Browser compatibility

Playwright framework to asses the browser compatibility of Try-Mopsa

Conformance tests
5 tests x (3 desktop browsers + 2 mobiles browsers x 2 viewports)

Identified several rendering issues on mobile

Additional tests
Universal: 13 programs x 11 configurations

Python: 5 programs x 6 configurations
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Browser compatibility (II)
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Conclusion



Related Work

I Server-side: Interproc [Jea09], Banal [Min12], FuncTion [Urb15]
Less adaptation required, but maintenance and security issues

I Client-side: Ciao Prolog [MPH22], Salto (OCaml) [LM25], Binsec tutorial [RB25]
Try-Mopsa supports relational domains and interactive user input

I LiSA for teaching [Neg+24]
I Interaction with IDEs [LDB19]
I Works between concrete and abstract debuggers [Do+20; Hol+24; MVR23]
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Conclusion

Program Configuration Options

Frontend

Universal Python C

Analysis Builder

Toplevel Analysis

Iterators Partitioning

Int Intervals Congruences

Float Intervals String Powerset

Relational Domain

Apron VPL

. . .

User Interface

Automatic Interactive DAP

Gray = unsupported by Try-Mopsa.

I Pure JS version of Mopsa

I Supports polyhedra, abstract
debugger

I Works on smartphones and
desktops alike

I Useful for demo or lightweight
teaching purposes

try-mopsa.rmonat.fr
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