
Coding computational laws:
20 recommendations for public administrations

Raphaël Monata and Liane Huttnerb

aUniv. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France;
bCentre d’Etudes et de Recherche en Droit de l’Immatériel, Univ. Paris-Saclay, F-92330
Sceaux, France

Abstract
Public administrations are steadily digitalizing all their procedures. In particular,
computational laws – such as taxes and benefits – are increasingly implemented
within computers, enabling scalable, automated computations. These computer im-
plementations have four key specificities: they are critical software at the intersection
between law and computer science, that will be updated regularly by legal changes,
and have a long lifespan, counted in decades. Thus, great care should be taken to
avoid any issue in these specific legal implementations. Building upon years of study-
ing and coding computational laws, both in administrations and as new research
products, we propose 20 recommendations to ease the development and maintenance
of legal implementations. These recommendations aim at being understandable for
lawyers and computer scientists alike.

KEYWORDS
Computational law; Legal automation; Algorithmic governance; Public
digitalization; Transparency and accountability

1. Introduction

In the last three decades, all states have steadily digitalized their public services, due
to the constant availability of computers, as well as the efficiency and cost cuts dig-
italization can provide. The European Union, through its ambitious “Digital Decade
Policy Programme”1 aims in particular at reaching 100% availability of “key public
services” of all member states by 2030.

However, this digitalization brings challenges in terms of accessibility and trans-
parency of public services. In this work, we consider the implementation of computa-
tional laws, that is, the computer code running laws precisely describing computations
– for example to describe taxes or benefits. We argue that these computer programs
have four key specificities. First, they are to be considered critical software, as they
can have dramatic societal impacts, e.g. by unfairly denying benefits to families in
need. While critical software usually concerns embedded systems within avionics or
power plants with life-threatening consequences, we argue that the studied systems
can have life-changing impacts too. Second, they are regularly updated through se-
ries of patches coming from legislative processes. Third, these implementations have
a really long lifespan. Some have been developed in the late 90s and are supposed

Corresponding author Raphaël Monat <raphael.monat@inria.fr>
1European Union Digital Decade Policy Programme 2030 Decision (EU) 2022/2481, European Parliament

and Council, 14 December 2022 ⟨https://eur-lex.europa.eu/eli/dec/2022/2481/oj⟩ accessed 9 January 2026.

https://eur-lex.europa.eu/eli/dec/2022/2481/oj

to run for decades to come, meaning they need to be well designed and maintained
to last so long. Last but not least, translating computational laws into computer code
is a complex process, that requires close collaboration between computer sci-
entists and lawyers. These past six years, we have been able to work on legacy
systems2 used in production by administrations, and to participate in an interdisci-
plinary, international research project aiming at designing next-generation tools easing
the implementation and maintenance of public code. Our journey started through a
work aiming a reverse-engineering parts of the legacy compiler3 used for the French in-
come tax. We have been able to establish a close collaboration with the administration
in charge of producing and running the income tax computations. As a side benefit, we
were able to observe the current processes established by this administration. Thanks
to this collaboration, we have been able to successfully complete our reverse engineering
and create a modern compiler4 to replace their legacy tool. This compiler is now being
integrated back into the public administration. Following this work, we have taken
part in designing Catala5, a next-generation computer language tailored to implement
computational laws in a transparent, lawyer-friendly fashion. Preliminary experiments
made by the team on real-world legal texts over the past few years have validated the
key design decisions behind Catala, and opened several interesting questions around
legal interpretations made by developers6.

Building on this line of research we have been pursuing, our discussions and obser-
vations both with academics and administrative civil servants, we share in this essay
what we believe to be the most important takeaways when coding computational laws.
This essay can be considered both as a set of recommendations and as a basis for fur-
ther discussion. It is primarily targeted at people who are writing new implementations
of the law, but can also be used as a checklist for people working on already existing
codes and for scholarly discussions on the topic.

Limitations. There are many different kind of laws, diverse ways to code the law
and different types of actors. Our essay targets the implementation of computational
laws, as done by public administrations to provide public services to citizens. This
article does not target systems aiming at helping judges, implementations for private
interests, laws that are not computational per se (such as nationality acts or contract
law). Our experience is limited to Western societies.

Outline. A summary of our twenty recommendations is provided in Figure 1. These
recommendations are split in six different kinds, on which we elaborate in the follow-
ing sections, explaining why these recommendations are essential and how one can

2Legacy systems are old or outdated systems that are still used.
3A compiler translates human-readable source code into machine-executable code
4Denis Merigoux, Raphaël Monat, and Jonathan Protzenko, “A modern compiler for the French tax code”

(Aaron Smith, Delphine Demange, and Rajiv Gupta eds, ACM 2021).
5Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko, “Catala: a programming language for the law”

(2021) 5(ICFP) Proc. ACM Program. Lang. 1; Liane Huttner and Denis Merigoux, “Catala: Moving Towards
the Future of Legal Expert Systems” [2022] Artificial Intelligence and Law.
6Denis Merigoux, Marie Alauzen, and Lilya Slimani, “Rules, Computation and Politics. Scrutinizing Unnoticed

Programming Choices in French Housing Benefits” (2023) 2(1) Journal of Cross-disciplinary Research in Com-
putational Law 23 ⟨https://inria.hal.science/hal-03712130⟩; Denis Merigoux and others, De la transparence à
l’explicabilité automatisée des algorithmes : comprendre les obstacles informatiques, juridiques et organisation-
nels (techspace rep, RR-9535, INRIA Paris 2024) ⟨https://inria.hal.science/hal-04391612⟩; Raphaël Monat,
Aymeric Fromherz, and Denis Merigoux, “Formalizing Date Arithmetic and Statically Detecting Ambiguities
for the Law” (Lecture Notes in Computer Science, Springer 2024) vol 14577 ⟨https://doi.org/10.1007/978-3-
031-57267-8_16⟩.

2

https://inria.hal.science/hal-03712130
https://inria.hal.science/hal-04391612
https://doi.org/10.1007/978-3-031-57267-8_16
https://doi.org/10.1007/978-3-031-57267-8_16

Figure 1. Summary of recommendations

Be aware of the specificities of implementing computational laws

(1) Coding the law is an interdisciplinary work between legal experts and computer
scientists that can only be reached through mutual trust and respect.

(2) Since legal codes are critical software, use tools and techniques to ensure high-
assurance of your code.

(3) Ensure that the codebase has a structure similar to the law which will allow you to
maintain it.

Make your implementation abide by the law

(4) Your implementation needs to abide by local data protection and administrative
laws.

(5) Guarantee transparency of your code.
(6) Make sure you have the complete set of laws you are implementing.
(7) Report, tag and document any legal interpretation or additional hypothesis you are

using in your implementation

Use the right programming tools

(8) Build a program that is deterministic and well-defined, without undefined be-
haviours such as division by zero, out-of-bound array accesses.

(9) Choose the right datatypes carefully:
• Use arbitrary-precision numbers to represent monetary units and avoid round-

ing imprecision.
• Beware of date-related computations. They need to handle leap years, and

durations expressed in months or years are not precise.

Ease day-to-day technical development

(10) Test your code rigorously with lawyers, and address changes in the law.
(11) Version your code.
(12) Put together continuous integration that ensures that your codebase is identified,

backed up and tested regularly. Ensure that production releases are bundled and
published automatically.

(13) Separate developing concerns to facilitate maintenance
(14) Setup a centralized approach to track known issues in your codebase

Ensure your project will last

(15) Have a clear documentation for incoming users and developers.
(16) Assess bus factor: number of developers with critical knowledge not shared with

the rest of the team.
(17) Beware of proprietary solutions, both at the hardware and the software level.

Facilitate public interaction

(18) Aim for explainable decisions that can be understood by citizens.
(19) Allow individuals to appeal results of automated computations.
(20) Use a bug tracking platform which also allows individuals to notify the problems

they are confronted with.

3

implement them. We finish by briefly discussing related work.

2. Be aware of the specificities of implementing computational laws

Recommendation 1: Coding the law is an interdisciplinary work between legal
experts and computer scientists that can only be reached through mutual trust
and respect.

Coding the law is a difficult task that require close collaboration between lawyers and
computer scientists. This collaboration can only be successful if both parties respect
and trust the other. Both parties need to look at the other discipline with an open-
mind and accept difficulty. This can prove challenging since law and computer science
function very differently.

On the one hand, programming leaves no room for ambiguity. A computer cannot
understand a programmer directly. The programmer gives instructions to a computer
through programs, written in specified programming languages. The computer will only
obey code instructions to the letter. Ambiguities cannot be resolved by computers, they
have to be taken care of during the programming part by a human. A wide variety of
programming languages exist, each with their sweet spot, for example in terms of ease
of coding and long term maintenance.

On the other hand, laws are not a simple set of rules needing implementation by
computer scientists. Complexity, ambiguities and unplanned situations form an entire
part of the legal system – which that has been functioning for millenniums. Unclear,
imprecise and contradictory laws are perfectly normal, because of their social, political
and philosophical functions. In this respect, legal scholars and lawyers have developed
complex tools and concepts. They have discussed for decades – and even centuries –
how to interpret the law, how to combine laws that contradict each other, and to what
extent applying the law requires active choices. Coding the law is impossible without
knowing about these characteristics of the law and having a basic understanding of the
already existing answers.

It is only through this mutual understanding that coding the law can be done.
Lawyers and computer scientists will thus have to interact, in order to detect and
resolve ambiguities arising from the law during its translation into code.

Recommendation 2: Since legal codes are critical software, use tools and techniques
to ensure high-assurance of your code.

Critical software are software whose bugs can have dramatic consequences on hu-
man lives. These typically are software used in planes, trains, hospitals or nuclear
power plants. These software pieces are traditionally validated by independent bodies,
checking compliance with standards. For example in civil avionics, the EASA & FAA
check compliance with DO-178C7.

We argue that software implementing laws can be classified as critical software as
well. For example, social benefits and tax collection depend almost entirely on the
calculation done by the computers and receive little human supervision. Any issue in
the implementation can have tremendous impact on citizens or even state funding. We
provide some example of notorious failures in Examples 1 and 2, and refer concerned

7RTCA, “DO-178C, software considerations in airborne systems and equipment certification” [2011] .

4

readers to Redden and others8 for a survey of systems that were so faulty they have
been canceled.

Thus, having a high assurance that the code being run corresponds to the law
is paramount. Treating programs that implement the law as critical software means
that considerable resources must be invested to ensure the implementation works as
intended. As in transport, energy or health, there can be a sub-classification of the
criticality of legal software. Creating such a classification is left as future work.

Example 1: Phoenix automated payroll failures for Canadian civil servants 9

The Phoenix automated payroll system was developed by IBM, and deployed in
2011, with the goal of modernizing the pay of Canadian civil servants. The pro-
gram should have provided “$70 million in annual savings by centralizing pay oper-
ations”. However, the replacement of the legacy system failed, and more than half
of all Canadian civil servants suffered pay issues from the Phoenix automated pay-
roll system, resulting in years of fixing incurred financial issues for civil servants.
What should have been an economical measure transformed into “$2.2 billion in
unplanned expenditures” for the Canadian government.

Example 2: Dutch childcare benefits scandal
Through a failing fraud detection system used between 2005 and 2019, the Dutch
Tax and Customs Administrations wrongly accused more than tens of thousand
of parents to making fraudulent benefits claims. These accusations lead to reim-
bursement demands, having tremendous financial consequences on beneficiaries.
The fraud detection system has been described by the Dutch Data Protection Au-
thority as “unlawful, discriminatory and improper” 10. The scandal culminated with
the resignation of the government in 2021.

Bouwmeester11 searches to understand reasons behind the failure of this system,
and highlight unused control mechanisms of the legislative and judiciary branches.

Recommendation 3: Ensure that the codebase has a structure similar to the law
which will allow you to maintain it.

Legal texts have a specific structure, usually consisting commonly consisting of a base
case refined by exceptions spread out throughout its description. This structure, whose
core can be encoded as default logic12, is not straightforward to encode using modern

8J Redden and others, “Automating public services: learning from cancelled systems” [2022] Cardiff, UK: Data
Justice Lab, Cardiff University ⟨https://carnegieuk.org/publication/automating- public- services- learning-
from-cancelled-systems/⟩ accessed 9 January 2026.
9Percy Mockler, The Phoenix Pay Problem: Working toward a Solution (Senate Canada 2018) ⟨https ://

publications.gc.ca/pub?id=9.859900&sl=0⟩ accessed 9 January 2026
10Dutch Data Protection Authority, “Werkwijze Belastingdienst in strijd met de wet en discriminerend” (2020)
⟨https://autoriteitpersoonsgegevens.nl/actueel/werkwijze-belastingdienst-in-strijd-met-de-wet-en-discriminer
end⟩
11Maarten Bouwmeester, “System Failure in the Digital Welfare State: Exploring parliamentary and judicial
control in the Dutch childcare benefits scandal” (2023) 44(2) Recht der Werkelijkheid 13 ⟨https://doi.org/10.
5553/RdW/138064242023044002003⟩
12Gerhard Brewka and Thomas Eiter, “Prioritizing Default Logic” in Intellectics and Computational Logic:
Papers in Honor of Wolfgang Bibel (Springer 2000) ⟨https://10.1007/978-94-015-9383-0_3⟩; Sarah B Lawsky,
“A Logic for Statutes” (2017) 21 Fla. Tax Rev. 60 ⟨https://doi.org/10.2139/ssrn.3088206⟩.

5

https://carnegieuk.org/publication/automating-public-services-learning-from-cancelled-systems/
https://carnegieuk.org/publication/automating-public-services-learning-from-cancelled-systems/
https://publications.gc.ca/pub?id=9.859900&sl=0
https://publications.gc.ca/pub?id=9.859900&sl=0
https://autoriteitpersoonsgegevens.nl/actueel/werkwijze-belastingdienst-in-strijd-met-de-wet-en-discriminerend
https://autoriteitpersoonsgegevens.nl/actueel/werkwijze-belastingdienst-in-strijd-met-de-wet-en-discriminerend
https://doi.org/10.5553/RdW/138064242023044002003
https://doi.org/10.5553/RdW/138064242023044002003
https://10.1007/978-94-015-9383-0_3
https://doi.org/10.2139/ssrn.3088206

programming languages. Programmers can thus be tempted to introduce discrepancies
between code and law, or at least to structure their codebase13 differently from the law.
However, these implementations are then hard to maintain in sync with legislative texts
in the long term, as programmers may have trouble pinpointing the code impacted by
a legal modification. We have observed real-life cases where these effects turn out to
be detrimental as they accumulate over the years: most computational laws tend to
evolve at least yearly, accumulating large implementation overheads due to inadequate
initial implementation choices.

3. Make your implementation abide by the law

Recommendation 4: Your implementation needs to abide by local digital and ad-
ministrative laws.

In addition to the laws the authors are implementing, authors should be keenly
aware that some “meta-laws” regulate machine implementations of the law. States and
legislators have adopted rules that will apply to the activity of coding the law, and not
taking those laws into account might end up in creating an illegal implementation. This
distinction is essential and the computation must respect both of these categories. At a
high-level, there are two categories of meta-laws applying to implementations: admin-
istrative law, and the rapidly expanding field of digital law, encompassing in particular
data protection, cybersecurity and artificial intelligence. These laws are defined at dif-
ferent levels: some of them are national, and others stem from international treaties.
As these laws vary substantially depending on the country, we highlight the general
concepts relating to these laws and the current trends.

Administrative law. Computations made and used by administrations (such as tax
computations and social benefits) are also concerned by administrative laws. In par-
ticular, we highlight what we believe is a major step regarding transparency of im-
plementations: since 2017, French administrations are required to publish the source
code of their implementation14. The state now maintains a list of implementations
developed by administrations15. If some are missing, citizens can seize an administra-
tive body (called CADA16) to require implementations to be made public. We believe
transparency is paramount to maintain public trust and ensure a high level of soft-
ware quality. These administrations also have to inform citizens whenever an algorithm
is used to take a decision about them. Citizens can also request more specific infor-
mation about the way algorithmic computations have impacted their situation. Most
importantly, the Constitutional Council has expressly forbidden the use of self-learning
program for public algorithms17.

13A codebase is a set of source codes defining a software.
14Loi 2016-1321 du 7 octobre 2016 pour une République numérique [Law for a Digital Republic] art 2 2016,
France, article 2.
15Direction Interministérielle du Numérique, “Les codes sources du secteur public” (2023) ⟨https://code.gouv.
fr/sources/⟩ accessed 9 January 2026.
16CADA, “Commission d’accès aux documents administratifs” (1978) ⟨https://www.cada.fr/⟩ accessed 9 Jan-
uary 2026.
17Decision no 2018-765 DC, Constitutional Council (Conseil constitutionnel), 12 June 2018 ⟨https://www.
conseil-constitutionnel.fr/decision/2018/2018765DC.htm#numero-considerant-71⟩ accessed 9 October 2025
(2018-765 DC) paragraph 71.

6

https://code.gouv.fr/sources/
https://code.gouv.fr/sources/
https://www.cada.fr/
https://www.conseil-constitutionnel.fr/decision/2018/2018765DC.htm#numero-considerant-71
https://www.conseil-constitutionnel.fr/decision/2018/2018765DC.htm#numero-considerant-71

Digital law. Data protection law deals with the processing of personal data through
automated or non-automated means. If the computer program uses data that is linked
to the identity of an individual, then it must respect these laws. This will be the case
most of the times, since the laws will be applied to a specific person. Furthermore,
personal data is often defined very broadly, in all existing legal instruments. In the
GDPR for example, “personal data” means any information relating to an identified
or identifiable natural person, who can be identified, directly or indirectly18. An IP
address is, for example, considered as personal data. The application of data protection
law means that the programmer must respect a certain number of principles. Most
importantly, the concept of necessity in data protection law may restrain the legality
of the implementation. In Europe, for example, and as the CJEU stated in several
cases19, necessity means that the processing is “suitable for achieving the objectives
pursued by them and whether there is no other less restrictive means in order to achieve
those objectives”. This is a strict conception of necessity. It means that the computation
of the law must be the best way to achieve its implementation.

Cybersecurity and artificial intelligence laws have been recently introduced, e.g by
the European Union with its Cyber Resilience and Artificial Intelligence Acts an-
nounced in 2024. We believe some software used by administrations are subject to
these laws, although it is a bit early to tell: both acts will apply in 2026-2027 at the
earliest.

Recommendation 5: Guarantee transparency of your code.

Note that even if transparency of the computational code may not be required by
your local administrative laws, we strongly recommend to make your code public.
This will improve transparency of administrative processes and tackle criticism about
opaque behaviors. It will also incentive to keep good quality code.

More broadly, at an ethical level, we believe that when implementing the law, pro-
grammers must have a sense of the criticality of the code they implement and the
potential impact (both positive and negative) they can have on citizens.

Recommendation 6: Make sure you have the complete set of laws you are imple-
menting.

Going back from the meta-laws to the laws targeted by an implementation, we also
want to stress that finding the complete set of laws specifying the implementation is a
paramount first step before implementing anything.

Recommendation 7: Report, tag and document any legal interpretation or addi-
tional hypothesis you are using in your implementation.

Imprecision, contextuality, need of interpretation, contradiction are inherent to the
concept of law itself. These characteristics of the law are major challenges to overcome

18Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC 2016, 2016/679, [2016] OJ L119/1, article 4(1).
19Heinz Huber v Bundesrepublik Deutschland C-524/06, CJEU, 16 December 2008 ⟨https ://eur - lex . euro
pa . eu/ legal - content/EN/TXT/?uri=CELEX:62006CJ0524⟩ accessed 9 October 2025; Patrick Breyer v
Bundesrepublik Deutschland C-582/14, CJEU, 19 October 2016 ⟨https://eur- lex.europa.eu/legal- content/
EN/TXT/?uri=CELEX%3A62014CJ0582⟩ accessed 9 October 2025; Peter Puskar v Financne riaditelstvo
Slovenskej republiky and Kriminalny urad financnej spravy C-73/16, CJEU, 27 November 2017 ⟨https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A62016CJ0073⟩ accessed 9 October 2025.

7

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:62006CJ0524
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:62006CJ0524
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A62014CJ0582
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A62014CJ0582
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A62016CJ0073
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A62016CJ0073

for their implementation into computer code. Indeed, computers can only execute a
fixed, specific sequence of instructions, where all ambiguities have been resolved.

Computer implementation of the law will thus require choices. This is similar to any
other implementation of the law, be it by judges or the administration. We recommend
all choices to be clearly documented in the source code and tagged as such. This will
allow for easy search, but it also serves more important purposes: accountability and
transparency over these choices.

Sometimes, the choices may appear as self-evident to domain experts or program-
mers. Sergot and others20 describe for example choices that have been made in the
interpretation of the British nationality act, stating that it is “usually possible to iden-
tify the intended interpretation with little difficulty”. Even if it is the case, we believe
that the mere existence of the interpretation needs to be documented and clearly es-
tablished for the sake of transparency.

We provide below examples of ambiguities to be resolved.

Example 3: Ambiguity of sale in Section 121
In Section 121 of the US Tax Code, the word “sale” is used in many different ways.
It can refer to the sale of the property that will provoke the exclusion of the gain
of Section 121, or it can refer to other sales, happening earlier or later in team.
Encoding all these situations in a single “sale” variable in the computation would
be insufficient, because the computer will not be able to discriminate between
them. As a consequence, we need to define different variables that are seemingly all
expressed by the term “sale” in the law. An implementation 21 needs in particular
to differentiate sales that have been made by individuals before they were filing
jointly (under section 121 (B)), needing to refer previous sales through variable
other_section_121a_sale.

Example 4: An example of micro-choice
Merigoux, Alauzen, and Slimani22 argue that already choosing which inputs citizens
will be asked to fill amounts to a form of legal interpretation made by developers,
which they call “micro-choices”. For the sake of illustration, they consider a part
of the French housing benefits, where one eligibility criterion is “the first day of
the calendar month following the third month of pregnancy in respect of a child of
rank three or more and the last day of the month preceding that in which the child
reaches his or her second birthday” 23. The authors argue that some choices may
not respect privacy, and could even ask for medical data (like the “presumed date of
the beginning of the pregnancy” used by French health professionals). In the end,
they conclude that a good input is to ask users whether their situation consists in
being before or after the first day of the third month of pregnancy, ensuring a good
level of privacy which eases compliance with locally applicable privacy laws.

20Marek J Sergot and others, “The British Nationality Act as a Logic Program” (1986) 29(5) Commun. ACM
370 ⟨https://doi.org/10.1145/5689.5920⟩.
21Louis Gesbert, Sarah Lawsky, and Denis Merigoux, “Catala Implementation of Section 121 of US Tax Code”
(January 2024) ⟨https://github.com/CatalaLang/catala-examples/blob/36055e91fdd936eac56d747cd40012dc
d58f0403/us_tax_code/section_121.catala_en⟩ accessed 9 January 2026
22Merigoux, Alauzen, and Slimani (n 6)
23Code de la construction et de l’habitation [Construction and Housing Code] art D823-20 2019, France

8

https://doi.org/10.1145/5689.5920
https://github.com/CatalaLang/catala-examples/blob/36055e91fdd936eac56d747cd40012dcd58f0403/us_tax_code/section_121.catala_en
https://github.com/CatalaLang/catala-examples/blob/36055e91fdd936eac56d747cd40012dcd58f0403/us_tax_code/section_121.catala_en

4. Use the right programming tools

Recommendation 8: Build a program that is deterministic and well-defined, with-
out undefined behaviours such as division by zero, out-of-bound array accesses.

We recommend using the right programming tools, to ensure that your programs
are well-behaved, and avoid unexpected behaviors that may happen randomly, either
in time on the same machine, or across different machines.

Our first recommendation is to ensure that your codebase does not contain undefined
behaviors. By definition, the programs containing those behaviors may do anything,
and the result may also depend on which computer the program is run. Usual unde-
fined behaviors include division by zero and out-of-bounds array accesses. Some unsafe
languages allow silent failures with easy recovering operations. While it may seem
appealing in the short term, we highly recommended against it. This is a recipe for in-
troducing some weird operations in your codebase, which may stay until no one knows
why it should happen anymore. We observed this kind of issue in real-world cases used
in production.

Recommendation 9: Choose the right datatypes carefully:

• Use arbitrary-precision numbers to represent monetary units and avoid round-
ing imprecision.

• Beware of date-related computations. They need to handle leap years, and
durations expressed in months or years are not precise.

Our second recommendation concerns the computer representation of decimal num-
bers. As computer memory is finite, not all numbers can be explicitly represented. A
popular representation is floating-point arithmetic, which offers a good performance-
precision ratio for tasks such as numerical computing. Floating-point operators are
well studied by experts, who have been able to prove that the relative rounding error
of each operation can be upper-bounded. We refer the interested readers to “Hand-
book of Floating-Point Arithmetic” from Muller and others,24 for an in-depth coverage
of this topic. This scientific community has also developed tools that can estimate
rounding errors of a given program, if floating-point computations are the option you
finally choose. However, we warn the readers that a lot of expertise is needed to avoid
cascading rounding errors which may lead to catastrophic results; an example is pro-
vided in Example 5. Basic numbers such as 0.1 are not exactly representable in binary
floating-point arithmetic.

Example 5: An example of catastrophic imprecision in floating-point arithmetic
In their “Handbook of Floating-Point Arithmetic”, Muller and others25 provide an
example of a sequence of computations (provided below) which converges towards
6 using real mathematical numbers. However, computations of this sequence using
traditional floating-point arithmetic offered by computers will converge to a value
of 100, resulting in a catastrophic imprecision.

24Jean-Michel Muller and others, Handbook of Floating-Point Arithmetic (2nd Ed.) (Springer 2018) ⟨https:
//doi.org/10.1007/978-3-319-76526-6⟩.

9

https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6


u0 = 2

u1 = −4

un = 111− 1130
un−1

+ 3000
un−1un−2

If there are no specific legal guidance on the precision of decimal computations, nor
floating-point experts to help you, we strongly recommend using arbitrary-precision
numbers to represent decimal numbers you may use (monetary units, ...) in order to
avoid catastrophic results. An example of arbitrary-precision numbers library is GNU’s
MP (GMP26). If you really need to rely on floating-point numbers, you may want to
carefully choose between using binary and decimal representations27.

To a lesser extent, we would like to warn our readers about date-related computa-
tions. First, the case of leap years should not be forgotten. More importantly, durations
expressed in months or years will have a length depending on the starting date, and
computing these durations may even be ambiguous, as shown in Example 6. As we
argued before, we seek to proscribe any ambiguous computation, and advise readers
to seek legal guidance to clarify these cases. We refer the interested reader to the work
of Monat, Fromherz, and Merigoux28 formally defining date arithmetic and providing
tools to detect ambiguous computations.

Example 6: Ambiguous computations in date arithmetic 29

Let us consider the date defined as one month after March 31st. Since April has only
30 days, you can either consider the result to be April 30th or May 1st, depending
on the “rounding mode” you choose. Some bodies of law choose another approach,
specifying that a month is a duration defined as 30 days.

A similar case happens when you want to compute the age of someone who is a
“leaper”, i.e., born a February 29th – depending on the country, leapers will come
of age on March 1st or on February 28th.

5. Ease day-to-day technical development

In addition to their criticality, another defining aspect of legal implementations is
their really long lifespan: unless the implemented body of law is radically changed,
the implementation may have started 20 years ago and can live – and will have to be
kept updated – for decades to come. This maintenance will be a significant challenge,
and any step where time has been invested to ease maintenance will have tremendous
positive impact in the years to come. This section offers advice to reduce those costs,
some of them being standard software engineering techniques. We refer the reader to

25Jean-Michel Muller and others, Handbook of Floating-Point Arithmetic (2nd Ed.) (Springer 2018) ⟨https:
//doi.org/10.1007/978-3-319-76526-6⟩
26Torbjrn Granlund and GMP Development Team, GNU MP 6.0 Multiple Precision Arithmetic Library (2015)
⟨https://gmplib.org/⟩.
27Michael F Cowlishaw, “Decimal Floating-Point: Algorism for Computers” (IEEE Computer Society 2003)
⟨https://doi.org/10.1109/ARITH.2003.1207666⟩.
28Raphaël Monat, Aymeric Fromherz, and Denis Merigoux, “Formalizing Date Arithmetic and Statically De-
tecting Ambiguities for the Law” (Lecture Notes in Computer Science, Springer 2024) vol 14577 ⟨https://doi.
org/10.1007/978-3-031-57267-8_16⟩.
29Monat, Fromherz, and Merigoux (n 28)

10

https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
https://gmplib.org/
https://doi.org/10.1109/ARITH.2003.1207666
https://doi.org/10.1007/978-3-031-57267-8_16
https://doi.org/10.1007/978-3-031-57267-8_16

Thomas and Hunt30 for an in-depth reference about software engineering and project
development.

Recommendation 10: Test your code rigorously with lawyers, and address changes
in the law.

We recommend establishing a test suite for your implementation. These tests de-
scribe what your implementation is supposed to return for specific input cases. These
cases can be either real or fictitious cases. Running those tests will provide an easy way
to check that you have not made breaking changes into your codebase. It will also make
sure during your design phase that you all agree on some examples. These tests should
be manually established by legal experts to make sure they abide by the law. They
should cover most, if not all of the possible cases encountered by your implementation.

Every time the law is updated, those tests will have to be thoroughly reviewed
to address any changes. Adding tests for new cases is also recommended. We cannot
emphasize this strongly enough: the correct update of testcases is critical to ensure
smooth maintenance and to detect potential bugs as early as possible.

Recommendation 11: Version your code, and ensure that production releases are
bundled automatically.

Using a version control system such as “git” will bring many benefits to your team
and your development workflow. In particular, it provides means to work as a team
on the same codebase: you can make modifications in your own space, and then share
them with the rest of the team so they can review those before you add them to your
official codebase. It keeps a history of your software, which always comes in handy when
you search for the source of a regression. Finally, it allows to back up your codebase
in a server.

Recommendation 12: Put together continuous integration, ensuring that your
codebase is identified, backed up and tested regularly. Ensure that production re-
leases are bundled and published automatically.

We suggest you add continuous integration to your project. This mechanism will
regularly fetch your codebase, and perform some sanity checks on it, for example by
verifying it can be run and that the test suite mentioned above returns the expected
results. This process is automatic and periodic – it can for example be configured to
be run each time you make a new change or each night. It will allow for early detection
of breaking changes in your codebase, provided your test suite is covering the changes.

An added benefit of continuous integration and code versioning is that releases
and distribution of the different versions of your software can be done automatically.
Automatic releases will not take human development time, and avoid human errors in
packaging.

Recommendation 13: Separate developing concerns to facilitate maintenance

We recommend separating concerns in your codebase: the legal part of your code
should not be written in the same repository as, for example, its interface. In practice,
the different interfaces (for example, those used by other service in your administra-

30David Thomas and Andrew Hunt, The Pragmatic Programmer: your journey to mastery (Addison-Wesley
Professional 2019).

11

tion, or by citizens) can even be handled by another team. This separation of concerns
also means you have to carefully consider which components will be exposed to other
administrative services. Let us assume your legal codebase contains a number of differ-
ent functions. Some of these functions are for your internal use only: you may decide
to change them a lot across different versions, remove them, replace it with others...
If you make public every function of your codebase, those internal functions could be
used by other services. This would restrict your maintenance freedom as you would not
be able to change those internal functions, at risk of breaking the code of other parts
of your administration. Thus, we recommend to only make the necessary functions
exposed when you distribute your component.

Recommendation 14: Setup a centralized approach to track known issues in your
codebase.

A bug tracking platform is another tool that should help software maintenance.
It provides a way to centralize the issues you have discovered about your project,
categorize and discuss those issues as well as assign whoever should fix it. It also
provides a way for everyone to see how the project is going on. If you do not centralize
issues or some of their data, for example by discussing some issues over email, or if you
keep the list of issues as a local file, it will have dire consequences at the inevitable
time when your team will change. In addition, having a central platform may trigger
inputs or discussions from your teammates and help resolve the issue. We recommend
that known corner cases of your implementation be also added to your bug tracker.

6. Ensure your project will last

Recommendation 15: Have a clear documentation for incoming users and devel-
opers.

All teams have a life, where some members may leave and others may come. Acci-
dents may also happen, creating abrupt and unexpected departures. We recommend
to have all processes clearly documented in written documents. Writing this documen-
tation will take time, but it may help pinpoint some issues in the current workflow,
and will help with onboarding newcomers!

Recommendation 16: Assess bus factor: number of developers with critical knowl-
edge not shared with the rest of the team.

Alongside this process, we recommend assessing the “bus factor” of your team: the
number of members with critical pieces of knowledge that is not shared with any other
member of the team and whose knowledge would disappear in case of an accident.
This assessment should happen regularly, and depends on the the dynamics of your
team evolution, and the potential risks of its members. Whenever possible, we advise
to document the identified critical pieces of knowledge to reduce risk.

Recommendation 17: Beware of proprietary solutions, both at the hardware and
the software level.

We are strongly wary of proprietary solutions, where a company provides access
specific hardware or software they develop and license to you. These solutions may

12

be appealing in the short term, by providing external expertise and ready to run,
potentially specialized solutions. However, you will lose expertise and you may end up
locked in a solution developed by a single company. While your administration will
have to continue its work and implementation, proprietary companies have their own
priorities, can go bankrupt or significantly increase their fees in the long term.

7. Facilitate public interaction

Recommendation 18: Aim for explainable decisions that can be understood by
citizens.

In order to guarantee a high level of trust and accountability, we recommend that
computational implementations should be explainable: citizens should be able to trace
and follow how the computation reached a given amount or decision, and how this has
changed compared to previous computations.

In France, administrations are required by the law to provide explanations31, al-
though explainability is still a research topic and we have yet to see concrete and
compelling examples of explainable decisions in production.

Recommendation 19: Allow individuals to appeal results of automated computa-
tions.

When an explanation is not satisfying, individuals should be able to appeal the result
of the computational implementation. This is for example codified by the European
Union’s GDPR32 which mentions that people can “obtain an explanation of the decision
reached after such assessment and to challenge the decision”.

Recommendation 20: Use a bug tracking platform which also allows individuals
to notify the problems they are confronted with.

As a last resort, we recommend providing an open, bug tracking platform tracking
appeals and potential misbehaviors identified by citizens. This will improve trans-
parency. It may also help in fixing bugs not for a single household but ensure the fix
is backpropagated to all affected households in similar situations.

8. Related work

Analyzing failures and detecting errors. Redden and others33 study 61 cases of
canceled automated public services across Europe, UK, North America, Australia and
New Zealand. From this study, they emit ten recommendations in order to avoid fur-
ther cancellations, but more importantly to avoid deployment of tools having negative

31“For these decisions, the supervision officer ensures that [...] able to explain, in detail and in an intelligible
form, to the concerned person the way in which the processing has been implemented with regard to them.”
(Loi 78-17 du 6 janvier 1978 relative à l’informatique, aux fichiers et aux libertés [Data Protection Act] art
47(2) 2018, France, Article 47(2))
32Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC 2016, 2016/679, [2016] OJ L119/1, recital 71.
33n 8.

13

impact on citizens. Escher and Banovic34 define method to detect errors in a benefit
screening tool of the Pennsylvanian state, finding several case where the screening tool
would advise not to apply to benefits citizens would have been eligible to. Tizpaz-Niari
and others35 propose a debugging method for the US tax preparation software, which
is applied to strengthen open-source tools by finding several accountability bugs and
missing eligibility conditions. Goutagny, Fromherz, and Monat36 present a method to
automatically find all interpretation conflicts within a Catala program, and apply it
on the implementation of the French housing benefits.

Other guides and recommendations. Eck and others37 provide a way to audit
legal implementations through a three-way perspective: legal, computer science, and
through the lens of accountability obligations. Some audits have already been done in
the Netherlands, and the guidelines have been adopted by the state. Andrews38 describe
guidelines to design trustful and transparent AI systems for the case of the public sec-
tor. Chignard and Guerry,39 as senior members of the DINUM French administration
(in charge of the digital policy for the state), provide a guide for all French administra-
tions, explaining what kind of algorithms may bed used in the public sector, ethics and
liabilitiy issues as well as local laws regarding general algorithmic transparency. This
guide builds upon a position paper40 from high-ranking French civil servants identifying
specifics challenges of public sector algorithms, providing recommendations to design
accountable automated procedures. The Organization for Economic Co-opereration
and Development (OECD) published two reports in 2020 related to public code. The
first report41 is a whitepaper envisioning future tax systems (dubbed “Tax Administra-
tion 3.0”), where tax systems are closely integrated with “taxable events”, improving the
overall efficiency of administrations. The second report Mohun and Roberts,42 along-
side Diver,43 advocate for “rules as code”, meaning that legislative processes should
already produce code instead of laws that can only be interpreted by lawyers, and
then implemented as code. Similarly, a New Zealand Government report advocates to
co-design legislation and the corresponding machine-consume version. While we agree
that better cooperation between lawyers and computer scientists are required to im-

34Nel Escher and Nikola Banovic, “Exposing Error in Poverty Management Technology: A Method for Auditing
Government Benefits Screening Tools” (2020) 4(CSCW) Proc. ACM Hum. Comput. Interact. 064:1 ⟨https:
//doi.org/10.1145/3392874⟩.
35Saeid Tizpaz-Niari and others, “Metamorphic Testing and Debugging of Tax Preparation Software” (IEEE
2023) ⟨https://doi.org/10.1109/ICSE-SEIS58686.2023.00019⟩.
36Pierre Goutagny, Aymeric Fromherz, and Raphaël Monat, “CUTECat: Concolic Execution for Computational
Law” (Lecture Notes in Computer Science, Springer 2025) vol 15695 ⟨https://doi.org/10.1007/978-3-031-
91121-7_2⟩.
37Marlies van Eck and others, “LegitiMaat 1.0.3: A working method for conducting third-party research into
the use of algorithms by a government organization.” (July 2022) ⟨https://minbzk.github.io/LegitiMaat/⟩.
38Pia Andrews, “Designing for legitimacy” (October 2022) ⟨https://apolitical.co/solution-articles/en/designin
g-for-legitimacy⟩ accessed 9 January 2026.
39Simon Chignard and Bastien Guerry, “Guide des algorithmes publics” (2019) ⟨https://etalab.github.io/
algorithmes-publics/guide.html⟩ accessed 9 January 2026.
40Simon Chignard and Soizic Penicaud, “With great power comes great responsibility: Keeping public sector
algorithms accountable”, RightsCon (2019) ⟨https://github.com/etalab/algorithmes-publics/blob/master/
20190611_WorkingPaper_PSAAccountability_Etalab.pdf⟩ accessed 9 January 2026.
41Organisation for Economic Co-operation and Development, Tax Administration 3.0: the Digital Transfor-
mation of Tax Administration (OECD 2020) ⟨https://doi.org/10.1787/ca274cc5-en⟩.
42James Mohun and Alex Roberts, “Cracking the code: Rulemaking for humans and machines” [2020] ⟨https:
//doi.org/10.1787/3afe6ba5-en⟩.
43Laurence Diver, “Interpreting the Rule(s) of Code: Performance, Performativity, and Production” (2021)
⟨https://law.mit.edu/pub/interpretingtherulesofcode/release/4⟩ accessed 9 January 2026.

14

https://doi.org/10.1145/3392874
https://doi.org/10.1145/3392874
https://doi.org/10.1109/ICSE-SEIS58686.2023.00019
https://doi.org/10.1007/978-3-031-91121-7_2
https://doi.org/10.1007/978-3-031-91121-7_2
https://minbzk.github.io/LegitiMaat/
https://apolitical.co/solution-articles/en/designing-for-legitimacy
https://apolitical.co/solution-articles/en/designing-for-legitimacy
https://etalab.github.io/algorithmes-publics/guide.html
https://etalab.github.io/algorithmes-publics/guide.html
https://github.com/etalab/algorithmes-publics/blob/master/20190611_WorkingPaper_PSAAccountability_Etalab.pdf
https://github.com/etalab/algorithmes-publics/blob/master/20190611_WorkingPaper_PSAAccountability_Etalab.pdf
https://doi.org/10.1787/ca274cc5-en
https://doi.org/10.1787/3afe6ba5-en
https://doi.org/10.1787/3afe6ba5-en
https://law.mit.edu/pub/interpretingtherulesofcode/release/4

prove public implementation of computational law, we have several reservations this
approach. First, the interaction with implementations of laws predating this paradigm
is not considered, and it seems unlikely that all laws targeting e.g. taxes would be can-
celed to start a clean slate for the purposes of a new development approach. Second,
it is our understanding that legislators, in some cases, barely have the time to draft
laws: assuming they have the skills to write computer code, it is unlikely that they
would have time to do it during processes. Third, this approach reminds us of tech
companies developing non-critical software which can afford to “move fast and break
things”. However, we agree with Mohun and Roberts44 on the need for close interdis-
ciplinary collaboration and their following declaration “An approach emphasising the
use of a multidisciplinary team and the co-creation of human and machine-consumable
rules appears most likely to deliver”. Through an experimental study, Guitton and
others45 find that providing frameworks to improve implementations of automatically
processable regulations lead participants to creating better designs, suggesting that
organizations should be mandated to use such guides in order to minimize potential
issues within their systems.

On proprietary solutions. Bouras, Kokkinos, and Tseliou46 provide guidelines help-
ing public administrations choosing between open-source and proprietary software.
Note that the Organisation for Economic Co-operation and Development47 warn of the
potential risks of delegating work to the private sector, and proprietary solutions, in
particular with “the risk of commercial lock-in, where one company holds proprietary
access to the rules and can unfairly leverage a service or platform”. The Commons
Strategies Group,48 in “The Wealth of the Commons” go further and advocate that
public administration should use free software, in particular to keep citizen’s trust and
avoid delegating critical infrastructure to foreign companies.

Legacy & Modernization. Bellotti49 describes how to maintain legacy computer
systems, and provides modernization strategies and insights. Starting from the Euro-
pean Commission “no legacy principle” – where systems older than 15 years would have
to be replaced – Irani and others50 study the impact of legacy systems and the digital
transformation of European public administrations. They highlight in particular that
“legacy systems are frequently associated to vendor lock-in situations” (in case of pro-
prietary software), which upon modernization creates compatibility issues. Bozeman51

44n 42.
45Clement Guitton and others, “A validation study of frameworks for responsible automatically processable
regulation” [2025] AI & SOCIETY ⟨https://doi.org/10.1007/s00146-025-02479-4⟩.
46Christos Bouras, Vasileios Kokkinos, and Georgia Tseliou, “Methodology for Public Administrators for se-
lecting between open source and proprietary software” (2013) 30(2) Telematics Informatics 100.
47James Mohun and Alex Roberts, “Cracking the code: Rulemaking for humans and machines” [2020] ⟨https:
//doi.org/10.1787/3afe6ba5-en⟩.
48The Commons Strategies Group, The Wealth of the Commons. A world beyond market & state (Levellers
Press 2012) ⟨https://wealthofthecommons.org/essay/public- administration-needs- free- software⟩ accessed
9 January 2026.
49Marianne Bellotti, Kill It with Fire: Manage Aging Computer Systems (and Future Proof Modern Ones)
(No Starch Press 2021).
50Zahir Irani and others, “The impact of legacy systems on digital transformation in European public admin-
istration: Lesson learned from a multi case analysis” (2023) 40(1) Gov. Inf. Q. 101784 ⟨https://doi.org/10.
1016/j.giq.2022.101784⟩.
51Barry Bozeman, “Risk, reform and organizational culture: The case of IRS tax systems modernization” (2003)
6(2) International Public Management Journal 117 ⟨https://ipmn.net/wp2/wp-content/uploads/2018/07/6-
2-02a-Bozeman.pdf⟩.

15

https://doi.org/10.1007/s00146-025-02479-4
https://doi.org/10.1787/3afe6ba5-en
https://doi.org/10.1787/3afe6ba5-en
https://wealthofthecommons.org/essay/public-administration-needs-free-software
https://doi.org/10.1016/j.giq.2022.101784
https://doi.org/10.1016/j.giq.2022.101784
https://ipmn.net/wp2/wp-content/uploads/2018/07/6-2-02a-Bozeman.pdf
https://ipmn.net/wp2/wp-content/uploads/2018/07/6-2-02a-Bozeman.pdf

explores the causes of failure of the 1990-1996 modernization of IRS (US) tax system
and describe cultural changes performed in the IRS following this failure.

Coding the law. There is a long line of research studying, both from theoretical and
practical perspectives, how laws can be implemented, and what impact it can have.

In the field of law, Pierre Catala pioneered the proposition that programmers es-
tablish a set of “invariants” on which the structure of the computer program will rest.
These “invariants” are the concepts that will probably never change because they form
the basis of the particular legal statute52. Understanding the statute through these
invariants can be a good start, though it is not sufficient in practice.

Our recommendation 3 corresponds to the early work of Bench-Capon and Coenen53

recommending to establish isomorphism, i.e., a well-defined correspondence between
an implementation and the corresponding legal knowledge-based system.

Hoffmann-Riem54 warn against the risks of translating legal rules – which can be
interpreted in various ways, to allow leeway through human factors – into computer
code where no such ambiguity can be kept; this can thus lead to radical changes in
how laws are applied. They base their discussion on German legal provisions regulating
automated administrative decisions.

Ranchordas and Scarcella55 highlight the inequalities that digitalization of public
services can bring, as full digitalization reduces accessibility to parts of the population
unable to use, or access, a working computer. The authors argue that these inequalities
can be further strengthened when private companies provide intermediate software used
to interact between citizens and state (such as tax preparation software in the US).

Escher and others56 study the behavior of fifteen teams of students (being either
in computer science or law curriculum), tasked with implementing parts of the US
Bankruptcy code in the JavaScript programming language. Only two teams succeeded
in creating a faithful implementation of the law. What is more, most computer science
students were confident in their tool and a significant part were willing to replace human
judges by their tool. Through this study, the authors thus advocate for greater care to
be taken during production of legal software, as the disciplinary separation between
computer science and law is a huge source of errors and mistranslations. This work
experimentally confirms our Recommendation 1 about the need for deep cooperation
between legal experts and computer scientists involved in implementing computational
laws.

The Catala programming language57, named after Pierre Catala, ensures a struc-
tural correspondence between law articles and their implementation through literate
programming. Literate programming means that the code is always linked to the law it
is based on, which improves transparency of the implementation and simplifies main-
tenance.

52Pierre Catala, Le droit à l’épreuve du numérique: jus ex machina (PUF 1998).
53Trevor JM Bench-Capon and Frans P Coenen, “Isomorphism and legal knowledge based systems” (1992)
1(1) Artificial Intelligence and Law 65 ⟨https://doi.org/10.1007/BF00118479⟩.
54Wolfgang Hoffmann-Riem, “Legal Technology/Computational Law: Preconditions, Opportunities and Risks”
(2020) 1 Journal of Cross-disciplinary Research in Computational Law ⟨https://journalcrcl.org/crcl/article/
view/7⟩.
55Sofia Ranchordas and Luisa Scarcella, “Automated government for vulnerable citizens: Intermediating rights”
(2021) 30 Wm. & Mary Bill Rts. J. 373 ⟨http://wm.billofrightsjournal.org/wp-content/uploads/2019/05/
V30I2_07_RanchordasScarcella.pdf⟩.
56Nel Escher and others, “Code-ifying the Law: How Disciplinary Divides Afflict the Development of Legal
Software” (2024) 8(CSCW2) Proc. ACM Hum. Comput. Interact. 1 ⟨https://doi.org/10.1145/3686937⟩.
57Merigoux, Chataing, and Protzenko (n 5); Huttner and Merigoux (n 5).

16

https://doi.org/10.1007/BF00118479
https://journalcrcl.org/crcl/article/view/7
https://journalcrcl.org/crcl/article/view/7
http://wm.billofrightsjournal.org/wp-content/uploads/2019/05/V30I2_07_RanchordasScarcella.pdf
http://wm.billofrightsjournal.org/wp-content/uploads/2019/05/V30I2_07_RanchordasScarcella.pdf
https://doi.org/10.1145/3686937

Besides the scalability benefits stemming from the computer implementation of com-
putational laws, new research shows it can also benefit citizens and administrations
alike. Merigoux and others58 are exploring new interfaces to make the legal compu-
tations more explainable to non-expert citizens; Goutagny, Fromherz, and Monat59

present a method to automatically find all interpretation conflicts.

9. Conclusion

In this paper, we advocate for 20 recommendations that will improve the state of
public legal code. We believe our most important takeaway is that implementing the
law is inherently interdisciplinary work between legal experts and computer scientists.
It requires a high expertise in both domains, that can only be reached through a deep
cooperation based on mutual trust and respect.

Acknowledgments. We are grateful to James Barnes, Pierre Goutagny, James Grim-
melmann, Sarah Lawsky and Denis Merigoux for their helpful comments on early
versions of these recommendations. We thank the whole Catala team for the many dis-
cussions which contributed towards this paper and the valuable feedback we received.

This work is licensed under a Creative Commons “Attribution-
NonCommercial 4.0 International” license.

58Denis Merigoux and others, De la transparence à l’explicabilité automatisée des algorithmes : comprendre
les obstacles informatiques, juridiques et organisationnels (techspace rep, RR-9535, INRIA Paris 2024) ⟨https:
//inria.hal.science/hal-04391612⟩.
59n 36.

17

https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://inria.hal.science/hal-04391612
https://inria.hal.science/hal-04391612

	Introduction
	Be aware of the specificities of implementing computational laws
	Make your implementation abide by the law
	Use the right programming tools
	Ease day-to-day technical development
	Ensure your project will last
	Facilitate public interaction
	Related work
	Conclusion

